Problem 1
- Find the (complex) roots of the polynomial p(x) = 2x2 + 12x + 26.
- Find the values of parameter b for which the equation bx2 bx + 2 = 0 has no real roots.
- Find all roots (real or complex) of the polynomial p(x) = x6x53x43x322x2+4x+24
.
Hint: x = 3 is a root. Divide out the associated linear factor and continue with more roots that are easy to guess.
Problem 2
Assuming that z = a + ib is a complex number, compute real and imaginary parts of a)
b)
- (z)2z
Bonus: |x| is the absolute value function:
In the case of x C: |x| = xx
In the case of x R: |x| = x2 or in other words |x| = x if x 0; |x| = x if x < 0. In both cases |x| R and |x| 0.
- Compute . Use the definition of the absolute value function for complex numbers.
- d) Characterize the set of real numbers x that satisfy |4x + 2| |2x 3| .
Hint: You cannot directly work with | |. Use the definition of absolute value for real numbers to change the inequality into an equivalent problem without | |. For that, you can apply certain functions to both sides of the inequality without changing the inequality.
Problem 3
Proof the following for complex numbers z and w, i.e. z,w C. a)
- Re(
- Im(
Re(z) and Im(z) are the real and complex part of z, respectively. I.e. if z = a + bi, then Re(z) = a and Im(z) = b.
Reviews
There are no reviews yet.