
CSE340 Spring 2025 – Project 3

Due on Thursday May 2, 2025 by 11:59 pm on Gradescope

Abstract

The goal of this project is to give you some hands-on experience with implementing a

small compiler. You will write a compiler for a simple language. You will not be generating

assembly code. Instead, you will generate an intermediate representation (a data structure

that represents the program). The execution of the program will be done after compilation by

interpreting the generated intermediate representation using an interpreter that we provide.

1 Introduction

You will write a small compiler that will read an input program and represent it as a linked list.

A node of the linked list represents one instruction. An instruction node specifies: (1) the type of

the instruction, (2) the operand(s) of the instruction (if any) and, for jump instructions, the next

instruction to be executed (the default is to execute instructions consecutively in the list order).

After the list of instructions is generated by your compiler, your compiler will execute the generated

list of instructions by interpreting it. This means that the program will traverse the data structure

and, at every node it visits, it will “execute” the node by changing the content of memory locations

corresponding to operands and then proceeds to execute the next instruction after determining what

that instruction should be. This process continues until there is no next instruction to execute.

We have provided the code to execute the intermediate representation, so you don’t have to worry

about writing it, but you should understand what the provided code expects from your intermediate

representation.

These steps are illustrated in the following figure

The remainder of this document is organized into the following sections:

1. Grammar. Defines the programming language syntax by providing a grammar for it. The

terminals for the grammar are not described in this section, but are provided in the provided

lexer files.

1

2. Execution Semantics. Describe the semantics of statements for the assignment, input,

if, while, switch, for and output statements.

3. How to generate the linked list of instructions. Explains how to generate the interme-

diate representation (data structure) for assignment, input, if, while output statements.

It does not describe whow to generate intermediate representation for switch and for state-

ments. You should figure that on your own. You should read this section sequentially

and not skip around because it is explained in an incremental manner.

4. Requirements Lists other requirements.

5. Grading Describes the grading scheme.

2 Grammar

The grammar for this project is the following:

program → var section body inputs

var section → id list SEMICOLON

id list → ID COMMA id list | ID

body → LBRACE stmt list RBRACE

stmt list → stmt stmt list | stmt

stmt → assign stmt | while stmt | if stmt | switch stmt | for stmt

stmt → output stmt | input stmt

assign stmt → ID EQUAL primary SEMICOLON

assign stmt → ID EQUAL expr SEMICOLON

expr → primary op primary

primary → ID | NUM

op → PLUS | MINUS | MULT | DIV

output stmt → output ID SEMICOLON

input stmt → input ID SEMICOLON

while stmt → WHILE condition body

if stmt → IF condition body

condition → primary relop primary

relop → GREATER | LESS | NOTEQUAL

switch stmt → SWITCH ID LBRACE case list RBRACE

switch stmt → SWITCH ID LBRACE case list default case RBRACE

for stmt → FOR LPAREN assign stmt condition SEMICOLON assign stmt RPAREN body

case list → case case list | case

case → CASE NUM COLON body

default case → DEFAULT COLON body

inputs → num list

num list → NUM

num list → NUM num list

2

Some highlights of the grammar:

1. The if stmt does not have else.

2. The for stmt has a very general syntax similar to that of the for loop in the C language

3. The input and output keywords are lowercase, but other keywords are all uppercase.

4. condition has no parentheses.

3 Variables and Locations

The var section contains a list of all variable names that can be used by the program. There is no

type specified for variables. All variables are int by default. For each variable name, we associate

a unique locations that will hold the value of the variable. This association between a variable

name and its location is assumed to be implemented using a function location() that takes a

variable name (string) as input and returns an integer value. The locations where variables will

be stored is called mem which is an array of integers. Each variable in the program should have a

unique entry (index) in the mem array. This association between variable names and locations can

be implemented with a location table.

As your parser parses the input program, it allocates locations to variables that are listed in the

var section. You can assume that all variable names listed in the var section are unique. For each

variable name, a new location needs to be associated with it and the mapping from the variable

name to the location needs to be added to the location table. To associate a location with a variable,

you can simply keep a counter that tells you how many locations have been used (associated with

variable names). Initially the counter is 0. The first variable to be allocated a location will get

the location whose index is 0 (mem[0]) and the counter will be incremented to become 1. The next

variable to be associated a location will get the location whose index is 1 and the counter will be

incremented to become 2 and so on.

4 Inputs

The list of input values is called inputs and appears as the last section of the input to your compiler.

This list must be read by your compiler and stored in an inputs array, which is simply a vector of

integers.

5 Execution Semantics

All statements in a statement list are executed sequentially according to the order in which they

appear. Exception is made for some statements in the bodies of if stmt, while stmt, switch stmt,

and for stmt as explained below. In what follows, I will assume that all values of variables as well

as constants are stored in locations. This assumption is used by the execution procedure that we

provide. This is not a restrictive assumption. For variables, you will have locations associated with

them. For constants, you can reserve a location in which you store the constant (this is like having

an unnamed immutable variable).

3

5.0.1 Input statements

Input statements get their input from the sequence of inputs. We refer to i’th value that appears

in inputs as thte i’th input. The execution of the i’th input statement in the program of the

form ‘input a’ is equivalent to:

mem[location("a")] = inputs[input_index]

input_index = input_index + 1

where location("a") is an integer index value that is calculated at compile time as we have seen

above. Note that the execution of an input statement advances an input index which keeps track

(at runtime) of the next value to read.

5.1 Output statement

The statement

output a;

prints the value of variable a at the time of the execution of the output statement. That value is

stored in mem[location("a")].

5.2 Assignment Statement

To execute an assignment statement, the expression on the righthand side of the equal sign is

evaluated and the result is stored in the location associated with the lefthand side of the expression.

5.3 Expression

To evaluate an expression, the values in the locations associated with the two operands are obtained

and the expression operator is applied to these values resulting in a value for the expression.

5.4 Boolean Condition

A boolean condition takes two operands as parameters and returns a boolean value. It is used to

control the execution of while, if and for statements. To evaluate a condition, the values in the

locations associated with the operands are obtained and the relational operator is applied to these

values resulting in a true or false value. For example, if the values of the two operands a and b are

3 and 4 respectively, a < b evaluates to true.

5.5 If statement

if stmt has the standard semantics:

1. The condition is evaluated.

2. If the condition evaluates to true, the body of the if stmt is executed, then the next statement

(if any) following the if stmt in the stmt list is executed.

3. If the condition evaluates to false, the statement following the if stmt in the stmt list is

executed.

4

5.6 While statement

while stmt has the standard semantics.

1. The condition is evaluated.

2. If the condition evaluates to true, the body of the while stmt is executed. The next statement

to execute is the while stmt itself.

3. If the condition evaluates to false, the body of the while stmt is not executed. The next

statement to execute is the next statement (if any) following the while stmt in the stmt list.

The code block:

WHILE condition

{
stmt list

}

is equivalent to:

label : IF condition

{
stmt list

goto label

}

Jump: In the code above, a goto statement is similar to the goto statement in the C lan-

guage. Note that goto statements are not part of the grammar and cannot appear in a program

(input to your compiler), but our intermediate representation includes jump which is used in the

implementation of if, while, for, and switch statements (jump is discussed later in this document).

5.7 For statement

The for stmt is very similar to the for statement in the C language. The semantics are defined by

giving an equivalent construct.

FOR (assign stmt 1 condition ; assign stmt 2)

{
stmt list

}

is equivalent to:

5

assign stmt 1

WHILE condition

{
stmt list

assign stmt 2

}

For example, the following snippet of code:

FOR (a = 0; a < 10; a = a + 1;)

{

output a;

}

is equivalent to:

a = 0;

WHILE a < 10

{

output a;

a = a + 1;

}

5.8 Switch statement

switch stmt has the following semantics:

1. The value of the switch variable is checked against each case number in order.

2. If the value matches the number, the body of the case is executed, then the statement following

the switch stmt in the stmt list is executed.

3. If the value does not match the number, the next case number is checked.

4. If a default case is provided and the value does not match any of the case numbers, then the

body of the default case is executed and then the statement following the switch stmt in the

stmt list is executed.

5. If there is no default case and the value does not match any of the case numbers, then the

statement following the switch stmt in the stmt list is executed.

The code block:

6

SWITCH var {
CASE n1 : { stmt list 1 }
...

CASE nk : { stmt list k }
}

is equivalent to:

IF var == n1 {
stmt list 1

goto label

}
...

IF var == nk {
stmt list k

goto label

}
label :

And for switch statements with default case, the code block:

SWITCH var {
CASE n1 : { stmt list 1 }
...

CASE nk : { stmt list k }
DEFAULT : { stmt list default }

}

is equivalent to:

IF var == n1 {
stmt list 1

goto label

}
...

IF var == nk {
stmt list k

goto label

}
stmt list default

label :

The provided intermediate representation does not have a test for equality. You are supposed

to implement the switch statement with the provided intermediate representation.

7

Note that the switch statement in the C language has different syntax and semantics. It is also

dangerous!

6 How to generate the code

The intermediate code will be a data structure (a graph) that is easy to interpret and execute. I

will start by describing how this graph looks for simple assignments then I will explain how to deal

with while statements.

Note that, in the explanation below, I start with incomplete data structures then

I explain what is missing and make them more complete. You should read the whole

explanation.

6.1 Handling simple assignments

A simple assignment is fully determined by: the operator (if any), the id on the left-hand side, and
the operand(s). A simple assignment can be represented as a node:

struct AssignmentInstruction {

int lhs_loc;

int op1_loc;

int op2_loc;

ArithmeticOperatorType op; // operator

}

For assignment without an operator on the right-hand side, the operator is set to OPERATOR NONE

and there is only one operand. To execute an assignment, you need calculate the value of the right-

hand-side and assign it to the left-hand-side. If there is an operator, the value of the right-hand-side

is calculated by applying the operator to the values of the operands. If there is no operator, the

value of the right-hand-side is the value of the single operand: for literals (NUM), the value is the

value of the number; for variables, the value is the last value stored in the location associated with

the variable. Initially, all variables are initialized to 0. In this representation, the locations

associated with variables as well as the locations in which constants are stored are in the mem[]

array mentioned above. In the statement, the index (address) of the location where the value of the

variable or the value of the constant is stored is given. The actual values in mem[] can be fetched

or modified (for variables) at runtime.

Multiple assignments are executed one after another. So, we need to allow multiple assignment

nodes to be linked together. This can be achieved as follows:

struct AssignmentInstruction {

int lhs_loc;

int op1_loc;

int op2_loc;

ArithmeticOperatorType op; // operator

struct AssignmentStatement* next;

}

8

Remember that the data structure represents operands with their indices. So, you should make sure

that you store constant values (NUM) in mem[] at compile time and use the index of the constant as

the operand. You cannot use the constant value directly in the data structure.

This data structure will now allow us to execute a sequence of assignment statements represented

as a linked-list of assignment instructions: we start with the head of the list, then we execute every

assignment in the list one after the other.

Begin Note It is important to distinguish between compile-time initialization and runtime

execution. For example, consider the program

a, b;

{

a = 3;

b = 5;

}

1 2 3 4

The intermediate representation for this program will have have two assignment instructions:

one to copy the value in the location that contains the value 3 to the location associated with a

and one to copy the value in the location that contains the value 5 to the location associated with

b (also, your program should read the inputs and store them in the inputs vector, but this is not

the point of this example). The values 3 and 5 will not be copied to the locations of a and b

at compile-time. The values 3 and 5 will be copied during execution by the interpreter that we

provided. I highly recommend that you read the code of the interpreter that we provided as well

as the code in demo.cc. In demo.cc, a hardcoded data structure is shown for an example input

program, which can be very useful in understanding what the data structure your program will

generate will look like. End Note

This is simple enough, but does not help with executing other kinds of statements. We consider

them one at a time.

6.2 Handling output statements

The output statement is straightforward. It can be represented as

struct OutputInstruction

{

int var_loc;

}

where the operand is the index of the location of the variable to be printed.

Now, we ask: how can we execute a sequence of statements that are either assign or output

statement (or other types of statements)? We need to put the instructions for both kinds of

statements in a list. So, we introduce a new kind of node: an instruction node. The instruction

node has a field that indicates which type of instruction it is. It also has fields to accommodate

instructions for the remaining types of statements. It looks like this:

9

struct InstructionNode {

InstructionType type; // NOOP, ASSIGN, JMP, CJMP (conditional jump), IN, OUT

union {

struct {

int lhs_loc;

int op1_loc;

int op2_loc;

ArithmeticOperatorType op;

} assign_inst;

struct {

// details below

} jmp_inst;

struct {

// details below

} cjmp_inst;

struct {

int var_loc;

} input_inst ;

struct {

int var_loc;

} output_inst;

};

struct InstructionNode* next;

}

This way we can go through a list of instructions and execute one after the other or, if an

instruction is a jump instruction, execute the target of the jump after the instruction. To execute a

particular instruction node, we check its type. Depending on its type, we can access the appropriate

fields in one of the structures of the union. If the type is OUT (output), for example, we access the

field var index in the output inst struct to execute the instruction. Similarly for the IN (input)

instruction. if the type is ASSIGN, we access the appropriate fields in the assign inst struct to

execute the instruction and so on.

With this combination of various instructions types in one struct, the next field is now part

of the InstructionNode to line up all instructions in a sequence one after another.

This is all fine, but we do not yet know how to generate the list of instructions to execute later.

The idea is to have the functions that parses non-terminals return the code that corresponds to the

non-terminals, the code being a sequence of instructions. For example for a statement list, we have

the following pseudocode (missing many checks):

10

struct InstructionNode* parse_stmt_list()

{

struct InstructionNode* inst; // instruction for one statement

struct InstructionNode* instList; // instruction list for statement list

inst = parse_stmt();

if (nextToken == start of a statement list)

{

instList = parse_stmt_list();

append instList to inst; // this is pseudocode

}

return inst;

}

And to parse body we have the following pseudocode:

struct InstructionNode* parse_body()

{

struct InstructionNode* instl;

expect LBRACE

instList = parse_stmt_list();

expect RBRACE

return instList;

}

6.3 Handling if and while statements

More complications occur with if and while statements. These statements would need to be imple-

mented using the conditional jump (CJMP) and the jump (JMP) instructions. The conditional jump

struct would have the following fields

struct CJMP {

ConditionalOperatorType condition_op;

int op1_loc;

int op2_loc;

struct InstructionNode * target;

}

The condition op, opernd1 index and opernd2 index fields are the operator and operands of

the condition of the conditional jump (CJMP) instruction. The target field is the next instruction to

execute if the condition evaluate to false. If the condition evaluates to true, the next instruction

to execute will be the next instruction in the sequence of instructions.

To generate code for the while and if statements, we need to put a few things together. The outline

given above for stmt list, needs to be modified as follows (this is missing details and shows only the

main steps):

11

struct InstructionNode* parse_stmt()

{

...

InstructionNode * inst = new InstructionNode;

if next token is IF

{

inst->type = CJMP;

parse the condition and set inst->cjmp_inst.condition_op,

inst->cjmp_inst.op1_loc and

inst->cjmp_inst.op2_loc

inst->next = parse_body(); // parse_body returns a pointer to a sequence of instructions

create no-op node // this is a node that does not result

// in any action being taken.

// make sure to set the next field to nullptr

append no-op node to the body of the if // this requires a loop to get to the end of

// true_branch by following the next field

// you know you reached the end when next is nullptr

// it is very important that you always appropriately

// initialize fields of any data structures

// do not use uninitialized pointers

set inst->cjmp_inst.target to point to no-op node

...

return inst;

} else ...

}

The following diagram shows the desired structure for the if statement:

The stmt list code should be modified because the code presented above for a stmt list assumed
that each statement is represented with one instruction but we have just seen that parsing an if list

12

returns a sequence of instructions. The modification is as follows:

struct InstructionNode* parse_stmt_list()

{

struct InstructionNode* instl1; // instruction list for stmt

struct InstructionNode* instl2; // instruction list for stmt list

instl1 = parse_stmt();

if (nextToken == start of a statement list)

{

instl2 = parse_stmt_list();

append instl2 to instl1

// instl1

// |

// V

// .

// .

// .

// last node in

// sequence staring

// with instl1

// |

// V

// instl2

}

return instl1;

}

Handling while statement is similar. Here is the outline for parsing a while statement and creating

the data structure for it:

...

create instruction node inst

if next token is WHILE

{

inst->type = CJMP; // handling WHILE using if and goto nodes

parse the condition and set inst->cjmp_inst.condition_op, inst->cjmp_inst.opernd1 and inst->cjmp_inst.condition_opernd2

inst->next = parse_body(); // when condition is true the next instruction

// is the first instruction of the body of while

create jmp node of type JMP // do not forget to set next field to nullptr

set jmp->jmp_inst.target to inst

append jmp node to end of body of while

create no-op node and attach it to the list of instruction after the jmp node

set inst->cjmp_target.target to point to no-op node

return inst;

}

...

The following diagram shows the desired structure for the while statement:

13

6.4 Handling switch and for statements

You can handle the switch and for statements similarly, but you should figure that yourself. Use

a combination of JMP and CJMP to support the semantics of the switch and for statements. See

sections 5.8 and 5.7 for the semantics of the switch and for statements.

7 Executing the intermediate representation

After the graph data structure is built, it needs to be executed. Execution starts with the first

node in the list. Depending on the type of the node, the next node to execute is determined. The

general form for execution is illustrated in the following pseudo-code.

pc = first node

while (pc != nullptr)

{

switch (pc->type)

{

case ASSIGN: // code to execute pc->assign_stmt ...

pc = pc->next

case CJMP: // code to evaluate condition ...

// depending on the result

// pc = pc->cjmp_inst.target (if condition is false)

// or

// pc = pc->next (if condition is true)

case NOOP: pc = pc->next

14

case JMP: pc = pc->jmp_inst.target

case OUT: // code to print mem[pc->output_inst.var_loc] ...

pc = pc->next

case IN: // code to read next input value into

// mem[pc->input_inst.var_loc] and updating

// counter for how many values have been read

pc = pc->next

}

}

I have provided you with the data structures that represent instruction nodes and the code to

execute the graph that your code will generate and you must use it. When you submit your

code, you will not submit execute.cc and execute.h, we will provide them automatically for your

submission, so if you modify them, your submission will not compile and run. You should include

execute.h in your code. The entry point of your code is a function declared in execute.h:

struct InstructionNode* parse_Generate_Intermediate_Representation();

You need to implement this function. In the file demo.cc that we provide, we show a hardcoded

example of the function parse Generate Intermediate Representation() for a given example

input program. I strongly recommend that you draw the data structure that is generated by this

hardcoded function to gain a better understanding. If you come to office hours for help, I expect

that you will have a drawing of that data structure.

The main() function is provided in execute.cc:

int main()

{

struct InstructionNode * program;

program = parse_Generate_Intermediate_Representation();

execute_program(program);

return 0;

}

It calls the function that you will implement which is supposed to parse the program and

generate the intermediate representation, then it calls the execute program function to execute

the program. You should not modify any of the given code. In fact, you should not submit

execute.cc and execute.h; we will provide them when you submit your code.

8 Requirements

1. Write a compiler that generates intermediate representation for the code. The interpreter

(execute function) is provided.

2. Language: You can only use C++ for this assignment.

3. You can assume that there are no syntax or semantic errors in the input program.

15

9 Grading

The test cases provided with the assignment, do not contain any test case for switch and for

statements. However, test cases with switch and for statements will be added for grading the

project. Make sure you test your code extensively with input programs that contain switch and for

statements. Also, remember that the provided test cases are only provided as examples and they

are not meant to be exhaustive in any way.

The grade of the project will be the sum of the scores on various categories. Each category

will have multiple test cases, each with equal weight. The test cases will be broken down in the

following way (out of 130 points):

• Assignment statements: 15

• If statements: 20

• While statements: 20

• Switch: 30

• For statement: 15

• All statements: 30

• Total: 130

16

