BME646 and ECE60146: Homework 7

Spring 2024
Due Date: 11:59pm, March 17, 2024
TA: Akshita Kamsali (akamsali@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace. Late submissions will be accepted with penalty: -10
points per-late-day, up to 5 days.

1 Introduction

This homework introduces you to semantic segmentation of images with neu-
ral networks. Semantic segmentation is of great importance in biomedical
imaging where the anotomical features and the tissues affected by pathol-
ogy can have highly irregular shapes. Most neural network architectures
for semantic segmentation are based the Encoder-Decoder design as first
proposed in [1]. That network is famously known as the U-Net.

In this homework, you will learn about the basics of the Encoder-Decoder
networks for semantic segmentation through DLStudio’s mUnet class. That
class is a part of the larger SemanticSegmention class in DLStudio.

The semantic segmentation code in DLStudio is based on nn.MSELoss.
As you can imagine, such a loss function is not likely to be sensitive to the
boundaries of the pixel blobs that you want your neural network to iden-
tify. To remedy this shortcoming of the code in DLStudio, this homework
will also ask you to code up what is known as the Dice loss, which is also
known as the Sgrensen-Dice coefficient. It’s a popular choice in image seg-
mentation, as it quantifies the overlap between the predicted and the target
segmentation masks. Importantly, it provides a smooth and differentiable
measure of segmentation accuracy. Additionally, the Dice loss is known to
be particularly effective when you have imbalanced datasets.

2 Getting Ready for This Homework

1. First of all review the slides 63-83 from the Week 8 lecture. Un-
derstand the structure of the mUnet and how it performs semantic
segmentation.

2. Download the latest version (2.3.6) of DLStudio that has improved
code for Semantic Segmentation from the website or the link below:

https://engineering.purdue.edu/kak/distDLS/DLStudio-
2.3.6.tar.gz

It is highly likely that the latest version of DLStudio in your computer
is 2.3.5. What you need for this homework is 2.3.6.

Perform the appropriate installation in your environment based on the
instruction found at the link:

https://engineering.purdue.edu/kak/distDLS/#113

3. Locate the file named semantic_segmentation.py in the main Example
subdirectory in your installation of DLStudio.

Make yourself as familiar as you can with the script semantic_segmentation.py.
This is the only script you will be running for this homework.

4. Download the image dataset for DLStudio main module from the web-
site or from the below link:

https://engineering.purdue.edu/kak/distDLS/datasets_for_
DLStudio.tar.gz

5. To extract the tar.gz dataset file, use the tar zxvf command as pro-
vided below:

tar zxvf datasets_for_DLStudio.tar.gz

You do NOT need to extract the internal PurdueShapes5MultiOb ject-
10000-train.gz and PurdueShapes5MultiObject-1000-test.gz.
You only need to provide the pathname for the folder on your ma-

chine containing all the datasets. If done correctly, rest should be
handled.

https://engineering.purdue.edu/kak/distDLS/DLStudio-2.3.6.tar.gz
https://engineering.purdue.edu/kak/distDLS/DLStudio-2.3.6.tar.gz
https://engineering.purdue.edu/kak/distDLS/#113
https://engineering.purdue.edu/kak/distDLS/datasets_for_DLStudio.tar.gz
https://engineering.purdue.edu/kak/distDLS/datasets_for_DLStudio.tar.gz

3 Programming Tasks

The following are the programming tasks you must do for this homework:

1.

V]

16

Execute the semantic_segmentation.py script and evaluate both the
training loss and the test results. Provide a brief write-up of your
understanding of mUnet and how it carries out semantic segmentation
of an image. By “evaluate” we mean just record the running losses
during training. One of the most commonly used tools for evaluating
a semantic segmentation network is through the IoU loss. If you wish,
you can write that code yourself. But that is not required for this
homework.

The run_code_for_training_ for_semantic_segmentation function
of the SemanticSegmentation class in DLStudio uses just the MSE loss.
MSE loss may not adequately capture the subtleties of segmentation
boundaries. To this end, we will implement our own Dice loss and
augment it with MSE loss and compare it against vanilla MSE.

What follows is a code snippet to help you create your own implemena-
tion for Dice Loss. Make sure you set required_grad=True wherever
necessary to ensure backpropagation, therefore, enabling model learn-
ing.

def dice_loss(preds: torch.Tensor, ground_truth: torch.
Tensor, epsilon=1e-6):

non

inputs:
preds: predicted mask
ground_truth: ground truth mask
epsilon (float): prevents division by =zero

returns:
dice_loss

noon

implement your logic for dice 1loss

Stepl: Compute Dice Coefficient.
For the numerator, multiply your prediction with

19 # ground truth and compute the sum of elements(in H
and W dimensions).

20 # For the denominator, multiply prediction with

21 # itself and sum the elements(in H and W dimensions)
and multiply ground

22 # truth by itself and sum the elements(in H and W
dimensions) .

N

24 # Step2: dice_coeffecient = 2%numerator / (denominator
+ epsilon)

N

H*

Step 3: Compute dice_loss = 1 - dice_coeffecient.

O NN
~

N
3]

return dice_loss

4. Plot the best- and the worst-case training-loss vs. iterations using
just the MSE loss, just the Dice Loss and a combination of the two
. Provide insights into potential factors contributing to the observed
variations in performance.

5. State your qualitative observations on the model test results for MSE
loss vs. Dice+MSE loss.

4 Extra Credit

For extra credit of 25 points, you repeat the segmentation task in 3 with
COCO dataset classes [’cake’, ’dog’, ’motorcycle’] from HWG6.

Pick images with ONLY single object instance of atleast 200 x 200
bounding box. Extract the segmentation as a mask using the annToMask
. This converts the segmentation in an annotation to binary mask.

e You will need to extract the binary masks instead of the bounding
boxes for this task.

e Resize the images to 256 x 256 before storing them to the disk. You
should also resize the masks accordingly.

e You may continue using the same network from DLStudio. However,
you may need to adjust the network parameters to account for 256 x 256
resized images from COCO dataset as opposed to 64 x 64 images from
PurdueShapesMultiObject dataset.

5 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks. For HW7, you need to submit the following:

1. Your pdf must include a description of

e The figures and descriptions as mentioned in Sec. 3, and 4 if you
choose to do the extra credit.

e Your source code. Make sure that your source code files are
adequately commented and cleaned up.

2. Turn in a pdf file a typed self-contained report with source code and re-
sults. Rename your .pdf file as hw7_<First Name><Last Name>.pdf

3. Turn in a zipped file, it should include all source code files (only .py
files are accepted). Rename your .zip file as hw7_<First Name><Last
Name>.zip .

4. Do NOT submit your network weights.
5. Do NOT submit your dataset.

6. For all homeworks, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code.

7. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous
submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.

8. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

9. To help better provide feedback to you, make sure to number your
figures and tables.

References

[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation, 2015.

	Introduction
	Getting Ready for This Homework
	Programming Tasks
	Extra Credit
	Submission Instructions

