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Real Time Embedded Systems 
Worksheet 4. The Time-Slicing Structure 

 
This week we start work on the central components of an elementary real-time operating system - 
we will call it a 'runtime system' - that divides the processor's time between separate user tasks. 
These tasks will need to communicate with the system, and will request its services by means of a 
'software interrupt'. 
 
Implementation of Software Interrupts 
 
A software interrupt is known as a 'trap'. It causes the processor to respond in a very similar way as 
it does to a hardware interrupt, and so allows system calls from the user program and interrupts 
from hardware devices to enter the operating system in a consistent way. 
 
There are 16 trap instructions available, numbered 0 to 15, and written 
 
 trap #0 

 ... 

 trap #15 

 
Each of the 16 trap instructions may have its own interrupt service routine (ISR). After pushing the 
PC and SR, the processor then accesses a table in low memory, at address 80H. As for the 
hardware interrupts, the table contains a 4-byte value corresponding to the address of the ISR for 
each software interrupt. Vectors for the two types of interrupt will normally be combined into a single 
block of code. 
 
   ;interrupt vectors 
 
 org $64 ;origin 64H 
hvec1 dc.l hisr1 ;address of hardware ISR 1 
hvec2 dc.l hisr2 ; ... etc 
 
 org $80 ;origin 80H 
svec0 dc.l sisr0 ;address of software ISR 0 
svec1 dc.l sisr1 ; ... etc 
 
Controlling Interrupts 
 
There is, however, an important difference between hardware and software interrupts. Hardware 
interrupts are in order of priority, with 7 being the highest priority and 1 the lowest. If two hardware 
interrupts occur at the same time, then the one at the higher priority will be accepted and the other 
one will be kept waiting until the first ISR has completed. If a hardware interrupt occurs shortly after 
another one, but while the ISR for the first interrupt is still in execution, then the processor will again 
compare the priorities of the two interrupts. If the new interrupt is of a higher priority, then it will 
interrupt the lower priority ISR. If the new interrupt is at a lower priority than the currently executing 
ISR, it will be kept waiting until that ISR completes. 
 
Software interrupts do not behave in an analogous way. Since the processor can only execute one 
instruction at a time, it would be impossible for two software interrupts to occur at the same time, 
and unless a programmer includes a trap instruction within an ISR, there will also be no occasions 
on which a trap takes place during the processing of another trap. There is therefore no point in 
prioritising the software interrupts, and all 16 are at the same priority. There is, however, the 
question of the relative priority of the hardware and software interrupts. What if a hardware interrupt 
is raised at the same time as the processor is executing a software interrupt instruction? This is 
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handled by assigning all the software interrupts to priority level 0. Processing of a software interrupt 
is therefore interruptible by a hardware interrupt at any of the priority levels 1 to 7. 
 
Within your system, however, regardless of the type of interrupt being processed, you will want to 
prevent the acceptance of any other interrupt. Your system will therefore be completely 
uninterruptible. Once entered, it will always run to completion and then return to the user task that 
was running when the interrupt was raised. You will therefore need to disable interrupt acceptance, 
the procedure for which is explained now. 
 
Using the simulator, examine the 16-bit status register. Bits 8, 9 and 10 (labelled 'INT') hold a 3-bit 
value that represents the interrupt priority mask. When an interrupt is accepted, the mask is set to 
the priority level of that interrupt. A hardware interrupt will only be accepted if its priority is greater 
than the current setting in the mask. Normally, the mask is set to 000 (decimal 0) thereby allowing 
the acceptance of any hardware interrupt. However, it will remain at zero during its response to a 
software interrupt, since that is the priority of these interrupts, and will thereby allow the hardware to 
interrupt the software ISR. If you wish to prevent this, then the following instruction, placed at the 
very start of a software ISR, sets the mask to binary 111 (decimal 7). Any hardware interrupts will 
now be disabled, and held pending until the mask is returned to zero. 
 
 or      #$0700,sr    ;disable hardware interrupts 
 
The status register will have been automatically saved on the stack at the start of the interrupt 
servicing. On execution of the 'return from exception' instruction (RTE), it will be restored, and the 
mask reset to the zero value that it held previously, thereby allowing the acceptance of any 
hardware interrupt that might have been raised in the meantime and is currently pending. 
 
If you want to enable hardware interrupts at any other time, the following instruction will set the 
mask to zero. 
 
 and   #$f8ff,sr       ;enable hardware interrupts* 
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Practical Work 
 
Assessment question 
 
Work in groups of three on this question. Your submission should include the following. 
 

Your software, including the run-time system and the test programmes you used to 
demonstrate it. Submit the source code, not the assembler output listing. 
 
Documentation: a .PDF file is preferable, otherwise .DOC. 
 
An individual 5 - 10 minute video presentation from each member of the group, explaining 
parts the system and how they were tested. Each presentation should deal with specific 
aspects, and the three presentations together should cover the entire system. 

 
The names and student numbers of all three group members should be shown on the software 
heading and on the front page of the documentation. On the video presentations the name of the 
group member should be clearly announced or displayed as a caption. 
  
There are therefore five items to be submitted: a single software file, the documentation, and three 
presentations. These items should be placed into a single zipped file, and uploaded to a Canvas 
submission point to be advised. The submission deadline is 2pm on Friday 19th January, 2024. 
 
Each item will now be described in detail. 
 
The run-time system 
 
The work consists of writing a basic time-slicing system, along the lines of the one discussed in the 
lecture. It should allow the execution of several concurrent user tasks, with support for task 
scheduling and inter-task communication. An outline programme is provided on Canvas, but you will 
write the service routines (including reset), the scheduler, and the user tasks for each application.  
 
The user tasks are located in memory, above the system itself. Each task has its own area of 
memory, with the programme code at the lowest address, data above it, and top-of-stack at the next 
address above this task's memory area. For example, the following task occupies memory between 
2000H and 2FFFH. It has its code at 2000H, data at 2C00H, and stack at the top of the data area. 
 

Address  
2000H Programme code 
  
  
2C00H Data 
  
  
3000H Top-of-stack 

 
The system runs in the foreground, and is entered following either a timer interrupt, a software 
interrupt from one of the tasks requesting service, or another hardware interrupt. 
 
The following system calls should be supported by means of software interrupts. They can either 
each be allocated to a separate trap number, or (as in the demonstration system) they can all be 
called on the same trap, with one of the registers used to hold a value identifying the requested 
function. Some of the calls also require additional parameters in other registers. 
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1. Create task 
 Function: A currently  unused TCB is marked as in use and set up for a new task.   
   It is placed on the ready list. The requesting task remains on the ready list. Two  
   parameters indicate the start and end of the memory area occupied by the new task 
   and its data. 
 Parameters: The start address of the new task, 
   The address of its top-of-stack. 
 
2. Delete task 
 Function: The requesting task is terminated, its TCB is removed from the list and   
   marked as unused. Any memory allocated to it is returned to the system. 
 Parameters: None.   
 
3. Wait mutex 
 Function: If the mutex variable is one, it is set to zero and the requesting task is placed  
   back onto the ready list. If the mutex is zero, the task is placed onto the wait  
   list, and subsequently transferred back to the ready list when another task  
   executes a signal mutex. 
 Parameters: None. 
 
4. Signal mutex 
 Function: If the mutex variable is zero, and a task is waiting on the mutex, then that task  
   is transferred to the ready list and the mutex remains at zero. If the mutex is zero and 
   no task is waiting, the mutex is set to one. In either case, the requesting task remains 
   on the ready list. 
 Parameters: None. 
 
5. Initialise mutex 
 Function: The mutex is set to the value 0 or 1, as specified in the parameter. 
 Parameters: 0 or 1. 

 
6. Wait time 
 Function: The requesting task is placed onto the wait list until the passage of the   
   number of timer interrupts specified in the parameter, when it is transferred  
   back to the ready list. 
 Parameters: Number of timer intervals to wait. 
 

The following functions are more difficult. Good results may be obtained without implementing these 
functions, but it would be expected that they will be included in the best submissions.  Function 7 
will require the use of an additional interrupt at level 2, and you will need to consider the implications 
of this for the correct working of the system. Function 8 will require some thought about the internal 
record-keeping relating to which areas of memory are in use. You will need to devise your own test 
programmes for these functions. 
 
7. Wait I/O: 
 Function: The requesting task is placed onto the wait list, until an interrupt signifies   
   completion of an I/O operation, at which time the task is transferred back to the ready 
   list. 
 Parameters: None. 
 
8. Allocate memory 
 Function: For tasks that require a large amount of memory, it is more efficient to allocate it as 
   required when the task runs. A large area of memory is therefore kept free within the 
   system, and a block from it, of say 16 kbytes, is returned to the requesting task. If the 
   request is satisfied, the requesting task remains on the ready list. If there is  
   insufficient free memory available, then the requesting task is put on the wait list  
   until memory is returned when another task terminates. 
 Parameters: On return, the start address of the allocated memory is held in the parameter register. 

 



EEE8087 4W Rev. 1.5 

 

 

An additional function is executed automatically at start-up, or if the user presses the reset button. 
 
System reset 
 Function: The system is initialised: all internal variables are reset, and each TCB is  
   marked as unused.  A TCB for task T0 is then created, and T0 becomes   
   the running task. 

 
The system assumes that a default user task, T0, is present. The system runs this task immediately 
after a reset. It will need to be located at a predetermined address, which will be coded into the 
reset function. 
 
Your system should be robust, and deal with errors in an intelligent way. For example, what if the 
user tries to create more tasks than there are available TCBs? 
 
Test programmes 
 
Test your system using the following programmes. These are modified versions of the questions in 
last week's worksheet, this time running under your RTS. 
 
1. Testing create task and wait time functions. 
 
A stopwatch counts in seconds. It starts when button 0 is pressed and stops when the button is 
pressed again. It is programmed as follows. 
 
Timer interrupts are set to 100ms. Task 0 starts task 1, and both tasks run concurrently. A shared 
variable running is held in a memory location, and is set by T1 and read by T0. T0 displays a 2-
digit value on the 7-segment display, initialised to zero. If running is set, T0 increments the 

display, then waits for 10 time intervals, and then repeats. If running is not set, T0 does nothing. 
T1 tests pushbutton 0. Each time the button is pressed, running changes state. 
 
2. Testing initialise mutex, wait mutex, and signal mutex functions. 
 
On a gaming device, two players each have a button that fires bullets. Internal counters a and b 

record the number of bullets fired by each player, and a third counter c records the total number of 
bullets fired. It would be difficult to programme this application on the simulator because it is not 
possible to press two buttons at once. This would often happen in reality, and dealing with it 
represents the most difficult technical challenge in the programming. However, we can focus on this 
specific problem by programming two tasks, one for each player, and having each task fire bullets 
continuously. 
 
Timer interrupts are set to 100ms. Task 0 starts task1, and both tasks run concurrently. A shared 
variable c is held in a memory location (not a register) and is initialised to zero. Task 0 has a 

variable a, also in memory, and runs in a loop that continuously increments  a and c. Task 1 has a 
variable b in memory, and runs in a loop that continuously increments  b and c. 
 
To check that the system is working, one of the tasks calculates a + b - c, which should be zero, 
and displays it on the 7-segment display. 
 
3. A test of your own to check the delete task function. Also tests of the wait I/O and allocate 
memory functions, if you have implemented them. 
 
Your test programmes should be included at the end of the RTS code. Place all the tests together. 
An individual one can then be selected by commenting out the others. 
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Documentation 
 
This consists of a user manual. It will explain your system to a user, and will therefore focus on what 
it does and how to use it. It will include a brief overview of how the system works internally, but only 
to an extent that is required for the programmer to use the system correctly. It should be structured 
as follows. 
 
1. 
A general description, including, for example: 
 explanation of the principles of multitasking and time-slicing, and how they are implemented; 
 description of the memory layout of the user tasks as shown above; 
 explanation of the startup behaviour: a default task runs, which may then start other tasks. 
 
2.  
A description of each of the user functions and their parameters. Explain all aspects of the 
behaviour of each function that are of interest to the user. For example, when a new task is created, 
does it run immediately, or is it put at the end of the ready queue? What if two tasks are waiting for 
the same time, and so become ready together? Give some emphasis to the behaviour of any of the 
more advanced features that you may have implemented. For example, if you have implemented 
function 7, you should explain how the different interrupt priorities have been handled internally, and 
how this affects the user. Your descriptions should also state how long each function takes to 
execute. This time should be quoted in terms of instructions, and may be within a specified range, 
e.g., a particular function might execute in 30 - 50 instructions. 
 
3. 
A description of any other relevant aspects of system behaviour. For example, have you arranged 
for prioritised scheduling? If so, how does it behave? If not, then are all tasks that are ready likely to 
receive a similar amount of run time? Is there any possibility that a task may receive too little time, 
or none at all? State the timer interrupt period, and how long (in terms of instructions) the system 
takes to switch tasks. Using a reasonable average for the instruction execution time, calculate the 
proportion of time that is spent in the RTS, and how much is available for running the user tasks. 
 
With normal typeface and spacing (such as used here) it would be reasonable to expect a length of 
no more than five or six pages. Submission in .PDF format is preferred, but .DOC(X) is also 
acceptable. 
 
Individual presentation 
 
Each of the three group members should include an individual video presentation explaining 
particular parts of the system, how they worked, and how they were tested. These will probably be 
the functions with which that member was most closely involved in writing. Between the three 
presentations, the entire system should be explained. 
 
These presentations will complement the written material in your documentation. Instead of 
describing how to use the system, they will explain in more depth how it works internally. They do 
not need to be long and detailed, but should focus on the underlying working principles of the 
software. It is unlikely to be necessary to talk about individual machine instructions, unless you are 
discussing a relevant concept such as mutual exclusion. You should also explain how each part of 
the system was tested, and how the test results verify its correctness. 
 
Each presentation should last 5 - 10 minutes. 
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The Demonstration System 
 
A system was demonstrated during the lecture. It recognises a hardware interrupt at level 1 from the 
timer. It also allows system calls by means of software interrupts, all of which have been allocated to 
trap 0. These system calls are programmed by placing a value that identifies the requested function 
into data register 0, and any other parameters as required by each of the individual functions in 
registers D1 onwards. For example, system call 1 is used to create a new task. Suppose that this 
new task is called T1, and that its top-of-stack is to be located at address 6000H. It would be 
programmed as follows. 
 
 move.l #1,d0  ;set id in d0 

 move.l #t1,d1 ;set address of new task in d1 

 move.l #$6000,d2 ;set stack address in d2 

 trap  #0  ;call system 

  
The main data structure used in this system is a list of task control blocks (TCBs). Each TCB 
represents the state of one of the tasks. It contains a copy of all that task's registers, together with 
some items of control information including a flag that indicates whether the TCB is in use. 
 
At any time, each of the tasks will be in one of three states: the currently running task, ready to run 
when its turn comes up, or unable to run because it is waiting for the occurrence of some event, 
which could be a signal operation on a mutex, the expiry of a time interval, or an I/O interrupt. 
 
At initialisation, all the TCBs in the list are marked as unused. As each new task is started, one of 
the unused TCBs is allocated for it and marked as used. These TCBs are organised into two linked 
lists, in which each element contains a pointer to the next element. These lists are called 'ready' and 
'waiting'. Two more data items consist of pointers to the first element in each list. The pointer 
rdytcb holds the address of the first element in the list of ready TCBs. The first element in this list 
is the task that actually is running. The linkage in this list is circular, that is, the last entry points back 
to the first, so making it easy to access each TCB in rotation. The pointer wttcb holds the address 
of the first element in the list of TCBs that are waiting. Each element will contain an indication of the 
event the task is waiting for. There is no need to access elements of this list in rotation, so the last 
element has its pointer set to zero. 
 

 

N N  N N  N 0 

 
 
 
 
 
 

 
 
 
 
 

 
The example above shows a list of 8 elements, each of which has a pointer, labelled N, to the next 
element. Elements 4, 6, 0 and 1 are on the ready list, with element 4 being the TCB for the running 
task. Elements 3 and 7 are on the waiting list, and elements 2 and 5 are unused. 

0 1 2 3 4 5 6 7 

rdytcb 

wttcb 
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The system is organised into the following sections. Some of these sections, shown in italics, are 
provided for you in the outline code on Canvas. These can be used in your own systems: 
unchanged, modified, or rewritten as you wish. 
 
 Data definitions and equates 
 org 0 

 Interrupt vectors 
 Executable code 
  System reset 
  First-level interrupt handler entry 
  FLIH Service routines 
  Scheduler 
  Dispatcher 
 Data storage 
 Default user task T0 
 
Data definitions 
 
Each TCB represents the state of one of the current tasks, and is defined as follows. 
 
tcb     org     0               ;tcb record 

tcbd0   ds.l    1               ; D register save 

tcbd1   ds.l    1 

tcbd2   ds.l    1 

tcbd3   ds.l    1 

tcbd4   ds.l    1 

tcbd5   ds.l    1 

tcbd6   ds.l    1 

tcbd7   ds.l    1 

tcba0   ds.l    1               ; A register save 

tcba1   ds.l    1 

tcba2   ds.l    1 

tcba3   ds.l    1 

tcba4   ds.l    1 

tcba5   ds.l    1 

tcba6   ds.l    1 

tcba7   ds.l    1 

tcbsr   ds.l    1               ; SR (status reg) save 

tcbpc   ds.l    1               ; PC save           

tcbnext ds.l    1               ; link to next record 

tcbused ds.l    1               ; record in use flag 

        ds.l    1               ; other fields as required 

   ds.l    1     ;  

tcblen  equ     *               ; length of tcb record in bytes 

 
Data storage 
 
Storage for a list of TCBs is defined as in the first line below. The constant ntcb represents the 
number of TCBs in the list, and should be set up as an equate. Other variables are described 
throughout these notes. 
 

tcblst  ds.b    tcblen*ntcb             ;tcb list (length x no of tcbs) 

rdytcb  ds.l    1                       ;^ ready tcb list 

wttcb   ds.l    1                       ;^ waiting tcb list 

a0sav   ds.l    1                       ;A0 temporary save 

d0sav   ds.l    1                       ;D0 temporary save 

id      ds.l    1                       ;function id 
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Interrupt vectors 
 
The interrupt vectors are addresses of the code that will be executed as a result of an interrupt. The 
following three addresses are defined. 
 
Address res is the location of the routine to which the processor branches when the it responds to 

a hardware reset. Address fltint is the location to which the processor branches following a timer 
interrupt at level 1, and flsint following a software interrupt. The address stk is the value that is 
loaded into the stack pointer following a hardware reset. 
 
;****************************************************************************** 

                                        ;INTERRUPT VECTORS 

;****************************************************************************** 

 

        org     0 

         

        dc.l    stk                 ; initial SP 

        dc.l    res                     ; reset 

        org     $64 

        dc.l    fltint                  ; interrupt 1 (timer) 

        org     $80 

        dc.l    flsint                  ; trap 0 (system call) 

         
Executable Code 
 
First-level interrupt handler 
 
The first-level interrupt handler (FLIH) contains the code that services an interrupt. For convenience 
it is split into the common FLIH entry section that is executed immediately following an interrupt, and 
the FLIH service routines that carry out the processing specific to each type of interrupt. 
 
FLIH entry 
 
Hardware interrupts at level 1 are directed by the interrupt vector to enter the FLIH at fltint, while 
software interrupts arrive at flsint. The FLIH performs three main functions. 
 
It takes the pointer to the TCB of the currently executing task, stored at rdytcb, and saves the 
values of the registers, including the PC and SR, within that TCB.  
 
It also sets a value within a storage location, known as id, that identifies the source of the interrupt. 

If an interrupt has been raised by the hardware timer, then id is set to 0. For a software interrupt, 
id is set to the value, from 1 onwards, of the system call function number. The id will subsequently 
be used to select the corresponding service routine for processing this interrupt. 
 
Programming the above two operations requires particular care, because saving the value of the 
user's registers as they were at the time of the interrupt requires the use of certain registers itself. 
Registers D0 and A0 are in use for this purpose. These registers are therefore saved in temporary 
locations, before being transferred to their long-term holding locations within the TCB. 
 
The other function performed by the FLIH is to disable interrupts, if this has not already happened. A 
level-1 hardware interrupt from the timer will have set the interrupt priority mask to 1, thereby 
preventing any further interrupts. A software interrupt will have left the mask at 0, which would allow 
the timer device to interrupt the processing of the software interrupt. Therefore the first action taken 
at the software interrupt entry point is to disable hardware interrupts by setting the mask to 7. 
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;*******************************************************************************         
flih                                    ;FIRST-LEVEL INTERRUPT HANDLER ENTRY 

;******************************************************************************* 

 

fltint                                  ;ENTRY FROM TIMER INTERRUPT   

        move.l  d0,d0sav                ;save D0 

        move.l  #$0,d0                  ;set id = 0 

        move.l  d0,id 

        move.l  d0sav,d0                ;restore D0 

        bra     fl1   

 

flsint                                  ;ENTRY FROM TRAP (SOFTWARE INTERRUPT) 

        or      #%0000011100000000,sr   ;disable hardware interrupts 

        move.l  d0,id                   ;store id 

        bra     fl1 

        

fl1     move.l  a0,a0sav                ;save working reg 

         

        move.l  rdytcb,a0               ;A0 ^ 1st ready tcb (ie running tcb) 

             

        move.l  d0,tcbd0(a0)            ;store registers 

        move.l  d1,tcbd1(a0)        

        move.l  d2,tcbd2(a0) 

        move.l  d3,tcbd3(a0)  

        move.l  d4,tcbd4(a0) 

        move.l  d5,tcbd5(a0)        

        move.l  d6,tcbd6(a0) 

        move.l  d7,tcbd7(a0) 

        move.l  a0sav,d0  

        move.l  d0,tcba0(a0) 

        move.l  a1,tcba1(a0)        

        move.l  a2,tcba2(a0) 

        move.l  a3,tcba3(a0)  

        move.l  a4,tcba4(a0) 

        move.l  a5,tcba5(a0)        

        move.l  a6,tcba6(a0) 

 

        move    (sp),d0                 ;pop and store SR 

        add.l   #2,sp               

        move.l  d0,tcbsr(a0) 

         

        move.l  (sp),d0                 ;pop and store PC 

        add.l   #4,sp 

        move.l  d0,tcbpc(a0) 

         

        move.l  a7,tcba7(a0)            ;store SP  

 

          ;START OF SERVICE ROUTINES 

 

FLIH service routines, including system reset 
 
The service routines are arranged as a large switch statement, using id as the case variable. Each 
routine carries out one of the functions defined in the specification. 
 
Scheduler 
 
The scheduler examines the ready list, to which rdytcb points to the first element. This is the TCB 
of the task that was executing when the system was invoked, and which has just been interrupted. 
By following the links, the scheduler can locate each TCB that is currently ready to run. It selects 
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one of these tasks for running, and adjusts the value in rdytcb to point to the TCB for this task. 
This TCB will be then used by the dispatcher to resume execution of the task. 
 
The scheduler may make the decision as to which task will run next by doing nothing more than 
following the link in the current TCB to the next one in the chain. This will result in each ready task 
running in rotation, receiving an approximately equal amount of run time each. Alternatively, it would 
be possible to assign a priority to each task as it is created, by adding another parameter to the 
'create task' system call. Higher priority tasks would then receive a larger proportion of the available 
run time.  
 
Dispatcher 
 
The dispatcher reverses the action taken by the FLIH. Using the newly set value in rdytcb, it 
restores the registers of the selected task to the values that were stored when that task was 
interrupted. Careful housekeeping is again necessary, as this operation itself requires the use of 
registers D0 and A0. The dispatcher finishes by recreating the state of the stack as it was after the 
task was interrupted. The processor then uses a 'return from exception' instruction, as though it 
were returning from any normal interrupt, to transfer control back to the selected task. 
 
 

;          ;END OF SCHEDULER 

 

;*******************************************************************************         

disp                                    ;DISPATCHER  

;******************************************************************************* 

 

        move.l  rdytcb,a0               ;A0 ^ new running tcb 

        move.l  tcbd1(a0),d1            ;restore registers       

        move.l  tcbd2(a0),d2 

        move.l  tcbd3(a0),d3  

        move.l  tcbd4(a0),d4 

        move.l  tcbd5(a0),d5        

        move.l  tcbd6(a0),d6 

        move.l  tcbd7(a0),d7 

        move.l  tcba1(a0),a1        

        move.l  tcba2(a0),a2 

        move.l  tcba3(a0),a3  

        move.l  tcba4(a0),a4 

        move.l  tcba5(a0),a5        

        move.l  tcba6(a0),a6 

        move.l  tcba7(a0),a7 

 

        sub.l   #4,sp                   ;push PC 

        move.l  tcbpc(a0),d0             

        move.l  d0,(sp)    

 

        sub.l   #2,sp            

        move.l  tcbsr(a0),d0            ;push SR 

        move    d0,(sp) 

         

        move.l  tcbd0(a0),d0            ;restore remaining registers 

        move.l  tcba0(a0),a0 

         

        rte                             ;return 
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An example of a user programme running under this system is shown here. It consists of two 
concurrent tasks. Task T0 calls the system to start task T1, then switches on the RH LED. Task T1 
calls the system to wait for 3 timer intervals, then switches on the LH LED. From then on, the two 
tasks run alternately. If the timer is set to interrupt at one-second intervals, the result is that the RH 
LED lights immediately, then after 3 seconds the two LEDs start alternating.  
 
;******************************************************************************* 

                                        ;USER APPLICATION TASKS 

;******************************************************************************* 

 

                                ;system call equates 

sys     equ     0               ; system call trap (trap 0) 

syscr   equ     1               ; create new task 

sysdel  equ     2               ; delete task 

syswttm equ     6               ; wait on timer 

 

;******************************************************************************* 

                                        ;USER APPLICATION TASKS 

;******************************************************************************* 

 

        org     usrcode 

 

led     equ     $e00010         ;led 

sw      equ     $e00014         ;switch 

 

t0:                             ;TASK 0 

        move.l  #sysscr,d0       ;start task 1 

        move.l  #t1,d1    ;  address 

        move.l  #$4000,d2   ;  top of stack 

        trap    #sys         

                                ;repeat 

t00:    move.l  #$01,d1         ;  set led 0 

        move.b  d1,led 

         

        bra     t00 

         

t1:                             ;TASK 1 

        move.l  #syswttm,d0     ;wait for 3 clocks 

        move.l  #3,d1 

        trap    #sys   

                                ;repeat 

t10:    move.l  #$02,d0         ; set led 1 

        move.b  d0,led 

        

        bra     t10 

 

        END    res   

 

 

 
 


