
CS7643: Deep Learning
Assignment 4

Instructor: Zsolt Kira

Deadline: 8:00am ET April 1st, 2024

• This assignment is due on the date/time posted on canvas. We will have a 48-hour
grace period for this assignment. However, no questions regarding the assignment
are answered during the grace period in any form.

• Discussion is encouraged, but each student must write his/her own answers and
explicitly mention any collaborators.

• Each student is expected to respect and follow the GT Honor Code. We will
apply anti-cheating software to check for plagiarism. Anyone who is flagged
by the software will automatically receive 0 for the homework and be reported to
OSI.

• Please do not change the filenames and function definitions in the skeleton
code provided, as this will cause the test scripts to fail and you will receive no
points in those failed tests. You may also NOT change the import modules in each
file or import additional modules.

• It is your responsibility to make sure that all code and other deliverables are in the
correct format and that your submission compiles and runs. We will not manually
check your code (this is not feasible given the class size). Thus, non-runnable
code in our test environment will directly lead to a score of 0. Also, your
entire programming parts will NOT be graded and given 0 score if your code prints
out anything that is not asked in each question.

1

https://policylibrary.gatech.edu/student-life/academic-honor-code

Theory Problem Set
1. Given a 4 length sequence RNN, compute ∂L2

∂b
and show how you derived it. In

addition, please provide its computation graph.
The following equations might be helpful:

at = Uxt +Wht−1 + b

ht = tanh(at)

ot = V ht + c

ŷt = Softmax(ot)

Lt = CE(ŷt, yt)

f(x) = tanh(x) −→ f
′
(x) = 1− tanh2(x)

Hint: You can combine softmax and CE into a single derivative as follows:

∂Lt

∂ot
= ŷt − yt

Paper Review
In this section, you must choose one of the papers below and complete the following:

1. provide a short review of the paper,

2. answer paper-specific questions,

Guidelines: Please restrict your reviews to no more than 350 words and answers to
questions to no more than 350 words per question. The review part (1) should include
answers to the following:

3. What is the main contribution of this paper? In other words, briefly summarize its
key insights. What are some strengths and weaknesses of this paper?

4. What is your personal takeaway from this paper? This could be expressed either
in terms of your perceived novelty of this paper compared to others you’ve read in
the field, potential future directions of research in the area that the authors haven’t
addressed, or anything else that struck you as being noteworthy.

Paper Choice 1:
Up until recently, convolutional neural networks (CNN) have been the state of the art
for computer vision (CV) tasks. With the recent introduction of vision transformers
(ViT), there has been research into using this new architecture for CV. There have been
instances where ViTs have either achieved similar or even superior accuracy to CNNs.
The biggest question is, how do they see? Is it similar to CNNs? Is it different? This
paper attempts to answer these questions.
The paper can be viewed here.

2

https://arxiv.org/pdf/2108.08810.pdf

Questions for this paper:

• Compare and contrast the learned features of ViTs and CNNs? For differences
between the two, please provide explanations in terms of network architecture and
training.

• What is meant by spatial localization? And why might we consider the use of ViTs
better for object detection?

Paper Choice 2:
The second paper focuses on the generalization ability of pre-trained language models,
specifically zero-shot learning (i.e., performing a new task with no labels at all). It turns
out these models (like GPT-3) are surprisingly effective zero-shot learners. The paper
can be viewed here.

Questions for this paper:

• How might we approach the technical limitations (e.g., changes in architecture,
other context/data, optimization, etc.) mentioned in sections 5/6?

• What are the social implications of deploying these models for various uses (e.g.,
to generate image captions, answer questions as chatbots, etc.)?

1 Code: RNN, LSTM, Seq2Seq, and Transformer
models

In this assignment, we will work with Python 3. If you do not have a python distribution
installed yet, we recommend installing Anaconda (or mini-conda) with Python 3 (3.8.10
recommended).We have provided you with a conda environment YAML file to assist you
in setting up the code environment. Alternatively, there is a requirements.txt file if you
decide to use pip to install the required packages. You should make sure you have the
following packages installed

$ pip install torchtext
$ pip install torch
$ pip install spacy
$ pip install tqdm
$ pip install numpy

Additionally, you will need the Spacy tokenizers in English and German language, which
can be downloaded as such:

$python -m spacy download en_core_web_sm
$python -m spacy download de_core_news_sm

In your assignment you will see the notebook Machine_Translation.ipynb which contains
test cases and shows the training progress. You can follow that notebook for instructions
as well.

3

https://arxiv.org/pdf/2005.14165.pdf
https://www.anaconda.com/

2 RNNs and LSTMs
In models/naive you will see files necessary to complete this section. In both of these
files you will complete the initialization and forward pass.

2.1 RNN Unit
You will be using PyTorch Linear layers and activations to implement a vanilla RNN
unit. Please refer to the following structure and complete the code in RNN.py:

2.2 LSTM
You will be using PyTorch nn.Parameter and activations to implement an LSTM unit.
You can simply translate the following equations using nn.Parameter and PyTorch activation
functions to build an LSTM from scratch:

it = σ(xt.Wii + bii + ht−1.Whi + bhi)
ft = σ(xt.Wif + bif + ht−1.Whf + bhf)
gt = tanh(xt.Wig + big + ht−1.Whg + bhg)
ot = σ(xt.Wio + bio + ht−1.Who + bho)
ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

Here’s a great visualization of the above equation from Colah’s blog to help you understand
LSTM unit.

4

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

If you want to see nn.Parameter in example, check out this tutorial from PyTorch.

3 Seq2Seq Implementation
In models/seq2seq you will see the files needed to complete this section. In these files
you will complete the initialization and forward pass in __init__ and forward function.
Encoder.py Decoder.py Seq2Seq.py

3.1 Seq2Seq with attention
We will be implementing a simple form of attention to evaluate how it impacts the
performance of our model. In particular, we will be implementing cosine similarity as the
attention mechanism in decoder.py per this diagram. Please pay attention to comments
in TODO sections of the code for more detail.

5

https://pytorch.org/tutorials/beginner/nn_tutorial.html

To learn more about attention and how it is used in Neural Machine Translation, we
recommend (but not required) that you read "Neural machine translation by jointly
learning to align and translate (Bahdanau et al)" and "Effective Approaches to Attention-
based Neural Machine Translation (Luong et al)".

3.2 Training and Hyperparameter Tuning
Train seq2seq on the dataset with the default hyperparameters. Then perform hyperparameter
tuning and include the improved results in a report explaining what you have tried. Do
NOT just increase the number of epochs or change the model type (RNN to LSTM) as
this is too trivial.

4 Transformers
We will be implementing a one-layer Transformer encoder which, similar to an RNN, can
encode a sequence of inputs and produce a final output of possibility of tokens in target
language. The architecture can be seen below.
You can refer to the original paper for more detail. In models you will see the file
Transformer.py. You will implement the functions in the TransformerTranslator
class.

4.1 Embeddings
We will format our input embeddings similarly to how they are constructed in [BERT
(source of figure)](https://arxiv.org/pdf/1810.04805.pdf). Recall from lecture that unlike
a RNN, a Transformer does not include any positional information about the order in
which the words in the sentence occur. Because of this, we need to append a positional

6

https://arxiv.org/pdf/1409.0473
https://arxiv.org/pdf/1508.04025
https://arxiv.org/pdf/1706.03762.pdf

encoding token at each position. (We will ignore the segment embeddings and [SEP] token
here, since we are only encoding one sentence at a time). We have already appended the
[CLS] token for you in the previous step.

Your first task is to implement the embedding lookup, including the addition of positional
encodings. Complete the code section for Deliverable 1, which will include part of
__init__ and embed.

4.2 Multi-head Self-Attention
Attention can be computed in matrix-form using the following formula:

We want to have multiple self-attention operations, computed in parallel. Each of
these is called a head. We concatenate the heads and multiply them with the matrix
attention_head_projection to produce the output of this layer.
After every multi-head self-attention and feedforward layer, there is a residual connection
+ layer normalization. Make sure to implement this, using the following formula:

Implement the function multi_head_attention for Deliverable 2. We have already
initialized all of the layers you will need in the constructor.

4.3 Element-Wise Feedforward Layer
Complete code for Deliverable 3 in feedforward_layer: the element-wise feed-forward
layer consisting of two linear transformers with a ReLU layer in between.

4.4 Final Layer
Complete code for Deliverable 4 in final_layer., to produce probability scores for all
tokens in target language.

7

4.5 Forward Pass
Put it all together by completing the method forward, where you combine all of the
methods you have developed in the right order to perform a full forward pass.

4.6 Training
Train the transformer encoder architecture on the dataset with the default hyperparameters
– you should get a perplexity better than that for seq2seq.

4.7 Implement and train a full transformer (encoder/decoder)
In the previous section, you implemented the encoder module of a transformer from
scratch. In this section, you use pytorch built-in transformer module to build your
translator model. You will implement the functions in the FullTransformerTranslator
class. Please follow the instructions in the TODO sections of the code for implementation
details. Train your model with hyper-parameter tuning. You are asked to explain your
results and compare this model to other models you implemented in the assignment.

5 Deliverables
You will need to submit the notebook as well as your code in the models folder.
Run the script collect_submission.py to generate a zip folder with all the required code
files. Upload the resulting zip folder to Gradescope.
You will need to follow the guidance and fill in the report template.Your report should
include the performance metrics of the Seq2Seq model and Transformer architecture
before and after hyper-parameter tuning with explanations of what you did and why.
You also need to include the answers to the theory question and the section on paper
review in your report.When submitting to Gradescope, make sure you select
ALL corresponding slides for each question. Failing to do so will result in
point deductions.

8

	Code: RNN, LSTM, Seq2Seq, and Transformer models
	RNNs and LSTMs
	RNN Unit
	LSTM

	Seq2Seq Implementation
	Seq2Seq with attention
	Training and Hyperparameter Tuning

	Transformers
	Embeddings
	Multi-head Self-Attention
	Element-Wise Feedforward Layer
	Final Layer
	Forward Pass
	Training
	Implement and train a full transformer (encoder/decoder)

	Deliverables

