

 RMIT Classification: Trusted

COSC 2637/2633 Big Data Processing
Assignment 1 – Tax Trip Statistics

Assessment
Type

− Individual assignment.
− Submit online via Canvas → Assignment 1.
− Marks awarded for meeting requirements as closely as possible.
− Clarifications/updates may be made via announcements or relevant discussion forums.

Due Date Due at 23:59, 8 Sep 2024

Marks 25

Overview
Write MapReduce programs that give you a chance to develop an understanding of principles when solving
complex problems on the Hadoop execution platform.

Learning Outcomes
The key course learning outcomes are:
− CLO 1: model and implement efficient big data solutions for various application areas using appropriately

selected algorithms and data structures.
− CLO 2: analyse methods and algorithms, to compare and evaluate them with respect to time and space

requirements and make appropriate design choices when solving real-world problems.
− CLO 3: motivate and explain trade-offs in big data processing technique design and analysis in written

and oral form.
− CLO 4: explain the Big Data Fundamentals, including the evolution of Big Data, the characteristics of Big

Data and the challenges introduced.
− CLO 6: apply the novel architectures and platforms introduced for Big data, i.e., Hadoop, MapReduce and

Spark.

Assessment Details
You have two datasets: Trips.txt which records trip information, and Taxis.txt which is about taxi information.
Both Trips.txt and Taxis.txt are stored on HDFS. Complete the following MapReduce programming tasks
with Python and the methods taught in this course only.
• Using any other language like Java will directly lead to a 0 mark on the assignment. Also, you are not

allowed to use any Python MapReduce library such as mrjob.
• A reasonable big data processing program should not create a data structure to hold the complete data in

memory. The data should be processed line by line, and the intermediate results are stored in memory
only if it is the method taught in the course, like in-memory combining.

A sample of Taxis.txt A sample of Trips.txt
Taxi#, company, model, year
470,0,80,2018
332,11,88,2013
254,10,62,2018
460,4,90,2022
113,6,23,2015
275,16,13,2015
318,14,46,2014

Trip#, Taxi#, fare, distance, pickup_x, pickup_y, dropoff_x, dropoff_y
0,354,232.64,127.23,46.069,85.566,10.355,4.83
1,173,283.7,150.74,5.02,31.765,88.386,27.265
2,8,83.84,43.17,63.269,33.156,92.953,60.647
3,340,259.2,136.3,14.729,13.356,14.304,90.273
4,32,270.07,152.65,27.965,13.37,77.925,62.82
5,64,378.31,202.95,1.145,94.519,98.296,35.469
6,480,235.98,121.23,66.982,66.912,5.02,31.765
7,410,293.16,162.29,2.841,95.636,91.029,16.232

RMIT Classification: Trusted

Task 1 (5 marks)
For each taxi, we consider three types of trips, long trips (>=200), medium trips (>=100 and <200), and
short trips (<100). For each taxi and each type of trips, you are asked to count (i) the total number of trips,
(ii) the maximum fare of trips, (iii) the minimum fare of trips, and (iv) the average fare per trip. The program
should implement in-mapper combining with state preserved across lines.

The code must work for 3 reducers. You need to submit a shell script named Task1-run.sh. Running the shell
script, the task is performed. Please make sure the shell script and code files are organized in the same folder
(no subfolders).

Task 2 (10 marks)
You are asked to write a MapReduce program with Python to cluster trips in Trips.txt based on the dropoff
locations. Your code should implement 𝑘𝑘-medoid clustering algorithm known as Partitioning Around
Medoids (PAM) algorithm which is described below:

1. Initialize: randomly select 𝑘𝑘 of the 𝑛𝑛 data points as the medoids.
2. Assignment: Associate each data point to the closest medoid.
3. Update: For each medoid 𝑚𝑚 and each data point 𝑜𝑜 associated with 𝑚𝑚, swap 𝑚𝑚 and 𝑜𝑜, and compute the

total cost of the configuration (that is, the average dissimilarity1 of 𝑜𝑜 to all the data points associated
to 𝑚𝑚). Select the medoid 𝑜𝑜 with the lowest cost of the configuration.

4. Iteration: Repeatedly alternating steps 2 and 3 until there is no change in the assignments or after a
given number 𝑣𝑣 of iterations.

The code must work for 3 reducers, for different settings of 𝑘𝑘, and for different settings of 𝑣𝑣. The value of 𝑣𝑣
and the initial 𝑘𝑘 data points are input of the program using a separate file named as “initialization.txt”. An
example of the file for 𝑘𝑘 = 3 and 𝑣𝑣 = 10 looks like:

10
85.679 99.074
11.737 11.615
83.802 1.277

Your code should work for different settings of 𝑘𝑘 and 𝑣𝑣. Also, you should write up a shell script named
Task2-run.sh. Running the shell script, the task is performed where the shell script and code files are in the
same folder (no subfolders).

Task 3 (10 marks)
You are required to use what you learned so far to solve a slightly more advanced task. The task is to write a
MapReduce program with Python to count the number of trips for each taxi company and sort the
companies in ascending order based on the total number of trips.

Both Taxis.txt and Trips.txt will be used and they are stored on HDFS. The code must work for 3 reducers.
Also, you should write up a shell script named Task3-run.sh. Running the shell script, the task is performed
where the shell script and code files are in the folder (no subfolders).

Note that task 3 should have three MapReduce subtasks where the first is a join operation, the second is a
counting operation, and the third is sorting. The execution of the three subtasks should be specified in Task3-
run.sh. It is illegal to copy Trips.txt and/or Taxis.txt to the local machine and process them.

Submission
Your assignment should follow the requirement below and submit via Canvas > Assignment 1. Assessment
declaration: when you submit work electronically, you agree to the assessment declaration:

1 Using Euclidean distance between two points as the dissimilarity measure.

RMIT Classification: Trusted

Format Requirements
Failure to follow the requirements incurs up to 10 marks penalty.
1. If your student ID is s1234567, then please create a zip file named s1234567_BDP_A1.zip.

• You need to include a “README” file in the zip file. In the README, specify sufficient information
on how to run your codes for each task in AWS EMR.

• The code files and shell scripts for all three tasks are in the same folder (i.e., no subfolders), and then
zip the folder.

• Do not include hadoop-streaming-3.1.4.jar in the zip file.
2. On HDFS, the input files must be in /Input/ and the output must be in /Output/, as follows:

/Input/Trips.txt
/Input/Taxis.txt
/Output/Task1
/Output/Task2
/Output/Task3

Note that the filenames and directory names are case-sensitive. You are asked to follow the name
convention strictly, e.g., using “Task1” not “task1”.

3. Besides the zip file, organize the codes and the shell scripts of all three tasks in a separate PDF file (copy
& paste into a text editor and then save it as a PDF file). Submit the PDF file (so, there are two
submissions, one is the zip file, and the other is the PDF file). The PDF file is for Turnitin plagiarism
check. Your submission will not be graded if no such a PDF file is submitted or if the PDF does not pass
the Turnitin plagiarism check.

Functional Requirements
Failure to follow the requirements incurs up to 5 marks penalty.
− The code must be well written using a good coding style.
− The codes and scripts must come with concise and clear comments to explain the logical flow of the

program.

Academic integrity and plagiarism (standard warning)
Academic integrity is about honest presentation of your academic work. It means acknowledging the work of
others while developing your own insights, knowledge, and ideas. You should take extreme care that you
have:
− Acknowledged words, data, diagrams, models, frameworks, and/or ideas of others you have quoted (i.e.,

directly copied), summarized, paraphrased, discussed, or mentioned in your assessment through the
appropriate referencing methods.

− Provided a reference list of the publication details so your reader can locate the source if necessary. This
includes material taken from Internet sites.

If you do not acknowledge the sources of your material, you may be accused of plagiarism because you have
passed off the work and ideas of another person without appropriate referencing, as if they were your own.

Submitting material generated by an AI tool as your own work constitutes plagiarism and academic
dishonesty. DO NOT simply copy other people's work, it is not difficult for us to detect copied work and we
will pursue such cases.

RMIT University treats plagiarism as a very serious offense constituting misconduct. Plagiarism covers a
variety of inappropriate behaviours, including:
− Failure to properly document a source.
− Copyright material from the internet or databases
− Collusion between students
For further information on our policies and procedures, please refer to
https://www.rmit.edu.au/students/student-essentials/rights-and-responsibilities/academic-integrity

 RMIT Classification: Trusted

Marking Guide

• Late submission results in penalty of 10% marks for (up to) every 24 hours being late.
• If unexpected circumstances affect your ability to complete the assignment, you can apply for special consideration.

− Requests for special consideration within 7*24 hours, please email the course coordinator directly with supporting evidence.
− Request for special consideration of more than 7*24 hours must be via the University Special

consideration: https://www.rmit.edu.au/students/student-essentials/assessment-and-exams/assessment/special-consideration.

Task 1 0 marks
 - cannot run on AWS EMR or
 - no/unreasonable output or
 - >1 major logic error in the code

1 mark
output incorrect due to 1
major logic error in the
code or shell script

2-3 marks
output incorrect due
to >1 minor logic
error in the code or
shell script

4 marks
output incorrect due to
1 minor logic error in
the code or shell script

5 marks
output correct and no
code/script error,
concise and clear
comments

Task 2 0 marks
 - cannot run on AWS EMR or
 - no/unreasonable output or

- >1 major logic error in the code

1-3 marks
output incorrect due to 1
major logic error in the
code or shell script

4-6 marks
output incorrect due
to >1 minor logic
error in the code or
shell script

7-8 marks
output incorrect due to
1 minor logic error in
the code or shell script

9-10 marks
output correct and no
code/script error,
concise and clear
comments

Task 3 0 marks
 - cannot run on AWS EMR or
 - no/unreasonable output or

- >1 major logic error in the code

1-3 marks
output incorrect due to 1
major logic error in the
code or shell script

4-6 marks
output incorrect due
to >1 minor logic
error in the code or
shell script

7-8 marks
output incorrect due to
1 minor logic error in
the code or shell script

9-10 marks
output correct and no
code/script error,
concise and clear
comments

Functional
requirement

Failure penalty on functional requirements detailed in the specification

Format
requirement

Failure penalty on format requirements detailed in the specification

Marking in Practice
• Please thoroughly test your program prior to submission, as markers are not expected to modify any code (.py or .sh) you submit. For example, if your

Bash script contains improper comments that prevent it from running, you will lose marks.
• The data files provided in this assessment do not represent big data; they are intended solely to verify the accuracy of your program's output. Nonetheless,

always design your program with the potential to handle real big data scenarios in mind. The marker may test your code with a larger data set.

