
FIT2102 Programming Paradigms
2024

Assignment 1: Functional Reactive Programming
Due Date: Friday, 30 August 2024, 11:55 PM
Weighting: 30% of your final mark for the unit
Interview: During Week 7
Overview: Students will work independently to create a game using Functional
Reactive Programming (FRP) techniques. Programs will be implemented in
TypeScript and use RxJS Observable streams to handle animation, user interaction,
and other similar stream behaviours. The goal is to demonstrate a good
understanding of functional programming techniques as explored in the first
five weeks of the unit, including written documentation of the design decisions and
features.



Submission instructions
Submit a zipped file named <studentNo>_<name>.zip which extracts to a
folder named <studentNo>_<name>

● It must contain all the code for your program along with all the supporting
files as well as the report.

● It should include sufficient documentation that we can appreciate everything
you have done.

● You also need to include a report describing your design decisions.
● The only external library should be RxJS libraries supplied with the starter

code.
● Make sure the code you submit executes properly.
● Do not submit the node_modules or dist folders.

The marking process will look something like this:
1. Extract <studentNo>_<name>.zip
2. Navigate into the folder named <studentNo>_<name>
3. Execute npm install and npm run dev
4. Open http://localhost:5173 in a browser

Please ensure that you test this process before submitting. Any issues during
this process will make your marker unhappy, and may result in a deduction in marks.

Late submissions will be penalised at 10% per calendar day, rounded up. Late
submissions more than seven days will receive zero marks and no feedback.

http://localhost:5173


Git Instructions

We will be using Git for the assignment, however, this will mostly be self directed.
There are no requirements on how many commits you need to the repo. However,
we do recommend following good practices, and having frequent commits with
meaningful commit messages. If any issues arise with academic integrity or
submission, this will be used as evidence if you have completed your own work on
time, if you have no commits, this will likely make it harder for you to clear yourself of
any possible academic integrity issues, so we highly recommend you follow good
practices.

The assignment uploaded to moodle, will be used for marking, unless there are
exceptional circumstances which prevented you from uploading to moodle, at which
point, we will be marking the last version committed to Git before the due date.

The instructions for the setup are posted on Ed, and follow them to setup the repo
and access the skeleton code.



Table of Contents
Assignment 1: Functional Reactive Programming 1

Submission instructions 1
Table of Contents 2
Task description 3
Requirements 4

Minimum requirements 4
Full Game requirements 4
Additional requirements 5
Report 5

Plagiarism 6
AI statement 6

Additional Information: Marking Criteria and Suggestions 7
Marking (30 marks total) 7

Report (4 marks) 8
Functional Programming style (8 marks) 8
Code Quality (8 marks) 9
Observable and RxJS usage (8 marks) 9
Game Features (2 marks) 10

Rubric 11
Marking bands (summary of marking guide) 12
Marking guide 13

How to get an HD or High HD 16
Tips and suggestions 17
Changelog 18



Task description
In this assignment, we will use the RxJS Observable stream explored from Week 3
to create the classic Guitar Hero game in an SVG canvas. You will be provided with
a starter code bundle similar to the applied sessions, including instructions on usage.

The image above and the Wikipedia page are meant to give you an idea of the
gameplay, but yours needn’t look the same or work in precisely the same way,
especially with regard to graphics. Note that only a subset of the features
discussed in the link will be part of the requirements.

You will also need to write a report, as described below.

https://en.wikipedia.org/wiki/Guitar_Hero


Requirements

The game must be implemented in a good functional reactive programming
style to get marks. A subset of the game’s features will be required to get a passing
grade. A greater subset of features will be required to get a higher grade. To achieve
the maximum marks for this assignment, you will have to use a little creativity and
add some non-trivial functionality of your own choice.

Minimum requirements
All of these requirements must be reasonably executed to achieve a passing grade

- A game board with four columns
- Circles appear from the top of the board and move down in a continuous

manner, where each circle aligns with a music note.
- Notes can be played by using keys for each note when the circles align with

the bottom row.
○ You can use any keys you want to, but this must be documented

somewhere easy to find for your marker.
- Notes are read from the file provided as input to the main function (see Note

Specification for specification)
- The timing of the notes must align with the given CSV file.
- The notes not for the current instrument, will be played which contains the rest

of the song
- Notes demonstrate reasonable behaviour

○ Appear heuristically (a simple heuristic will suffice) across all four
columns

○ Notes disappear when they have been played
- Each note is played for the correct duration in which they are played.

○ If the key press, does not correctly align with a note, it will be played for
a random duration between 0 and 0.5s

- Each time a key is pressed
○ The correct note must be played if the circles align with the bottom row
○ Otherwise, a random note is played.

- Scores must be kept track during the game, for both hitting and missing notes.
- The game should end when the song finishes playing.
- A short 1-2 page PDF report detailing your design decisions and use of

functional programming techniques discussed in the course notes

Full Game requirements
Meets minimum requirements and has additional features

- If the note is longer than one second, the notes must have tails, where the tail
represents the length of the note.

- The user must hold down the correct key for the length of the tail to ensure it
is ‘correctly’ played



○ The score will update, iff the note is played for the correct duration
○ If the player lets go of the key too early, the note stops playing

- A score multiplier must be included, starting at 1x and increasing by 0.2 for
every 10 consecutive notes hit (e.g., 10 notes = 1.2x, 20 notes = 1.4x), and
resetting to 1x when a note is missed.

- Smooth and usable gameplay.
- See video for an idea of appropriate gameplay. Note: This is not a full

implementation but is meant to showcase what a game might look like.

Additional requirements
See the Additional Information and How to get a High HD sections.

Report
Your report should be 300–600 words in length, plus up to 200 words for each
significant additional feature, where you should:

- Include basic report formatting headings/paragraphs and diagrams as
necessary

- Summarise the workings of the code and highlight the interesting parts
(don’t just describe what the code does, we can read the source code!)

- Give a high level overview of your design decisions and justification
- Explain how the code follows FRP style and interesting usage of Observable
- How state is managed throughout the game while maintaining purity and

why
- Describe the usage of Observable beyond simple input and why
- Important: Need to explain why you did things
- Do not include screenshots of code unless you have an exceptional

reason
- This should be concise and straightforward, you may use dot points

Your marker will be instructed to stop reading if your report is too long, and
only mark the first 600 (+200 per feature) words.

https://www.youtube.com/watch?v=dW2IUiVWHHY


Plagiarism
We will be checking your code against the rest of the class and the internet using a
plagiarism checker. Monash applies strict penalties to students who are found to
have committed plagiarism. Additionally, we will be conducting an interview, which
gives you a chance to explain your code and help us understand your code better.
As long as you wrote your own code, there is nothing to worry about during the
interview process.

AI statement
As per the AI statement on Moodle, use of generative AI in this unit is unrestricted.
However, all code generated with AI must be properly cited in the form of code
comments stating what has been generated and the scope of its use. You must be
able to demonstrate understanding of all code submitted as part of your assignment,
inability to explain any submitted code may result in an academic integrity case.

https://learning.monash.edu/course/view.php?id=19218&section=5


Definition of a Note

There are two types of notes:
1. user_played == True: This is the note which will be played by the user during

the game.
● Visual Representation:

○ Appearance: In the game, notes are represented as coloured
circles that travel down the screen. Each note will be in a
column, however, the column does not need to have one-to-one
mapping with an individual pitch value.

○ Columns: The game screen is divided into four columns, each
associated with a different button or key.

● Musical Correspondence:
○ Sound Trigger: When a note reaches the designated row at the

bottom of the screen, the player must press the corresponding
button or key. If done correctly and in time, this action "plays" the
note, meaning it triggers the associated musical sound.

○ Timing: The timing of pressing the button or key is crucial. The
game typically rates the accuracy of the player's timing, which
affects the score and the quality of the performance.

2. user_played == False: The note will be played by your code, but will not be
shown to the user in the game, but played using the music library.

Note Specification CSV

Each note is specified by five columns: user_played, instrument_name, velocity,
pitch, start (s), end (s).

● If the user_played column is True, this note should appear in the game,
otherwise, the note should be played in the background.

● The instrument_name will be the instrument for which the note should be
played in from the sample library

● The velocity of the note represents the volume, between 0 and 127. Note:
the API requires this to be in the range [0,1]

● The pitch of the note.
● start (s): start time in seconds, which is when the note should be played
● end (s): end time in seconds, which is when the note should be stopped.



How to play a note:
To play a note, you can use the given samples dictionary. This is already set up in
the skeleton code and is unlikely to be changed. Each instrument from the CSV, can
be used as the key in the dictionary. You can use the triggerAttackRelease
function. This takes four arguments:

1. The tone to play, which can be specified using the pitch from the CSV
2. The duration of the note in seconds
3. The start time, set to undefined, to start playing the note instantly.
4. The volume of the note, which corresponds to the velocity, in the range [0,1]

An example of playing notes is shown in the given midi_example.ts file, which you
can refer to, but is also provided below.

samples[instrument_name].triggerAttackRelease(

Tone.Frequency(pitch, "midi").toNote(), // Convert MIDI note to

frequency

1, // Duration of the note in seconds

undefined, // Use default time for note onset

velocity, // Set volume

);



Additional Information: Marking Criteria and
Suggestions
This section is not essential for completing the assignment, and is provided purely
for context and additional information to answer common questions students may
have.

Marking (30 marks total)
The goal of this assignment is to assess your understanding of FRP and Functional
Programming. The marking has three broad sections:

1. Implementation of game features
2. Usage and understanding of proper functional programming style
3. Usage and understanding of RxJS and Observable

It is important to realise that:
● To receive a Pass grade by implementing the Minimum requirements,

demonstrating application of functional programming ideas from our lectures
and applied sessions.

○ You can receive up to a Distinction for perfectly implementing the
Minimum requirements and demonstrating an excellent
understanding of how to use Observable to write clean, clear functional
UI code.

● To achieve a High Distinction, you will need to implement the Full game
requirements

● To achieve the maximum possible marks, you will need to implement the full
game requirements plus some aspect of additional functionality, as
described below.

Note that it is essential to follow the submission instructions, as deductions
may be applied for failing to follow the submission instructions.

We will mark 5 sections – Report, Functional Programming style, Code Quality,
Observable and RxJS usage, and Game Features (including advanced features) –
that are individually weighted.

Code that does not use Observable will not get a passing grade; games that use
imperative, impure, or mutable code will be heavily penalised.

The rubric and marking guide are provided here.



Report (4 marks)
The report is intended to demonstrate your theoretical understanding of functional
reactive programming, highlight design decisions, and help your marker appreciate
the work that you have put into this assignment.

Important considerations for the report:
● Design decisions need to be correct
● Need to display understanding of course material
● Reports must demonstrate knowledge of FRP to achieve a passing mark
● Marks can be awarded for students identifying issues with the code and

how they can be addressed
● Avoid filler in the report, but include enough information to show your marker

that you have understood the core concepts

Functional Programming style (8 marks)
This section is about using what we have covered in lectures and tutorials. This
involves concepts like:

● Small, granular functions
● Reusable functions, avoiding duplicate code
● Purity / referential transparency
● Fluent interfaces and fluent coding style
● Manipulation of different complex types and generic types
● HOF, curried functions
● Function composition/chaining

To achieve the maximum available marks, it is important to not only use
advanced functional programming concepts, but do so in a useful way – for
example, improving the readability of the code or following a declarative
programming style. For example, simply currying all your functions will not receive
marks unless they are partially applied somewhere and used appropriately

You may also attempt to use Lambda Calculus concepts in your code; however, be
careful as they can often just make things hard to understand – it will be important to
explain their usage in your report, so your marker can better appreciate your work.

Deductions will be applied for improper usage of types, including unjustified “any”
types.

Code Quality (8 marks)
This section loosely covers anything to do with how readable and understandable
your code is. Applying a good functional programming style tends to increase the
readability of your code. It is important that your code can be easily understood
to help your marker appreciate your work.



Some examples of what we look at are

● Appropriate line lengths (<80 characters)
● Documentation and commenting (should explain why the code is the way it is)
● Logical structuring of functions and variables, including overall flow of

program logic
● Appropriate variable naming
● Consistent and understandable formatting

Using a linter and formatter may help greatly with this section. See below for tips and
suggestions.

Observable and RxJS usage (8 marks)
This section covers usage of FRP – did you use Observable well?

Some important considerations:
● Must manage game state in Observable, and use the scan and merge

operators to get a passing mark (please refer to the Asteroids example)

● Must handle creation of a stream of notes using Observables and an
appropriate set of operations

● Usage of Observable as per discussed in the lectures, applied sessions,
workshop, and in the Asteroids example, while maintaining purity, is sufficient
for a high mark in this section if implemented very well and without issues

● To achieve the maximum marks available, we want to see interesting and
creative uses for Observable and RxJS operators (original work)

○ This can involve implementing custom Observables and research into
the RxJS operators documentation

○ Refer to the marking guide for a breakdown of what is required.

Other considerations:
● Side effects should be contained as much as possible
● Using additional RxJS operators that are not covered in class, or using the

ones we introduce in interesting and novel ways, will be awarded additional
marks (given that they are appropriate and useful)

Game Features (2 marks)

This section is about whether your game fulfils the requirements, and the overall
complexity of your game (and thus the implementation).

Adding features should not come at the expense of the other criteria – a well
implemented game with fewer features may and, often will, achieve a higher mark
than a less well implemented game with more features.

https://www.learnrxjs.io/learn-rxjs/operators
https://tgdwyer.github.io/functionaljavascript/#side-effects


Important: You will receive marks for implementing game features, but this mark
will also cap your total mark.

● The maximum mark possible for implementing minimum game
requirements is 70 (Distinction)

● The maximum mark possible for implementing full game requirements is 90
(HD)

● To achieve the maximum available marks (90+), you must implement
advanced requirements

Some marking considerations:

● Extra features must follow FRP

● Advanced requirements can be not just gameplay but extra FRP features too

● Tests: for full marks, tests need to be comprehensive and not just
simple/random test cases – they should guide development

● Bugs and other gameplay related issues will not be deducted from this
section and be deducted from the total mark

● The total mark cap will be increased when implementing additional features. It
is possible to achieve an HD by implementing the minimum game
requirements and some full game requirements

To achieve the maximum available marks, features should be significant and
change how state is managed in interesting ways. Discussed further below.

Bonus marks are available for particularly novel, impressive, or advanced features.
Note that marks cannot exceed 100% of the total available marks.



Rubric

The rubric consists of Marking bands that represent the possible grade values for
implementing requirements. This will be a cap on your final mark.

The Marking guide is what TAs will be using to mark your assignment, and what will
contribute to your final mark/grade for this assignment.



Marking bands (summary of marking guide)

Code/Report quality Implementation

Minimum
requirements

Full game Full game
+ extension(s)

Any of the following are not
acceptable: Use of imperative code,
TypeScript compile errors, `any`
types, Not using rx.js, No comments,
Missing or unreadable report,
Missing instructions for how to play
the game

Not passing. Not passing. Not passing.

Pure functional code (except in
`subscribe` handlers), no
compile/runtime errors, basic
comments, basic report covering the
implemented features. Uses
Observable for state management.

P C C

Effectively uses Observable for state
management, has generic types, and
side effects are identified; comments
are brief, only describing the
implementation. The report
demonstrates basic understanding of
FRP principles. Functions are used
for broad high level behaviour.

C D D

Small pure functions, immutable data
and reusable code exploiting
parametric polymorphism, side
effects are contained; complete
comments explaining the rationale
and choices made in code. Advanced
usage of Observable, including
custom implementations. Detailed
report of implemented features that
demonstrates strong understanding
of Functional Programming and FRP.

D HD HD (90+)



Marking guide

FP Style Code Quality Observable

0 - 1 mark Code is written in an
imperative style, use
of for/while loops
and mutable
variables (let/var).
Modifies mutable
data structures that
aren’t declared as
read only to handle
state management.
No use of FP

Code is completely
unreadable.
Contains very large
code blocks with
complex nested
logic and long lines.
Excessive use of
single letter and/or
vague function
names.

No use of
observables. Uses
DOM to store state
or does not use
Observable to store
state.

2 marks Some use of FP but
has not
demonstrated good
understanding.
Many functions are
impure and modify
state.

Code is difficult to
read and requires
careful analysis to
understand intent.
Many poor choices
for variable names
and many examples
of complex nested
logic with lack of
documentation.

Some use of
Observables, but
does not utilise
RxJS operators
such as scan to
effectively handle
state. Observable
callbacks contain
impure code outside
subscribe.

3 marks Demonstrates some
understanding of FP.
Code contains some
impure code. Use of
HOF, but not utilised
effectively.

Reader is able to
get a general idea of
code, but is difficult
to read. Contains
long lines and large
code chunks. Some
attempt at using
functions and
splitting up complex
logic.

Uses Observables
to handle state
management and
user interaction.
Some Observable
methods are not
used effectively or
not as intended,
which demonstrates
a lack of
understanding.

4 marks Style and structure
is adapted from
Asteroids example,
but is not adapted to
fit Guitar Hero. Code
is entirely pure.

Able to get the
general idea of
code. Contains
many complex
structures, and large
chunks of code that
require refactoring.
Minimal
documentation

Uses observables to
handle state
management and
user interaction.
Uses subscribe to
handle stream logic;
overuse of
subscribe callback.

5 marks Similar style to the
asteroids example,
effectively adapted
to new context.

Can tell the purpose
of each piece of
code. Contains
documentation, but

Good use of basic
Observables from
the unit. Some
methods in the



Code is entirely pure
and utilises the state
management
system introduced in
the Asteroids
example.

some comments are
redundant. Some
long lines and large
blocks, but generally
minimised.

Observable stream
are overly complex
and can be broken
down more
appropriately.

6 marks Improves the
Asteroids example
considerably for the
new game context.
Good use of small
modular functions
and HOF. Shows
great understanding
of course content.

Code quality is of
similar level to the
Asteroids example
in the notes.

Utilises Observable
structure covered in
unit content
effectively. Good
use of using
observables for
state management.

7 - 8 marks Applies FP concepts
in original ways
beyond the
Asteroids example.
Great use of HOF,
modular functions
and a custom type
system.
Demonstrates
fantastic
understanding of
course content in
novel and
interesting ways.

Code is easy to
read, intuitive and
flows well. Self
documenting
(descriptive variable
names, easy to
follow code flow).
Well documented
and comments are
provided when
needed. No long
lines, and code is
broken into readable
chunks.

Uses interesting
Observable
methods not
covered in course
content. Uses
custom
Observables/Subjec
t.



0 - 0.5 marks 1 mark 1.5 marks 2 marks

Report Not written or
does not
correspond to
submission.
Provides a
summary of the
code. Contains
some justification,
but focuses too
much on
summarising code.
Contains too many
screenshots of
code.

Provides a
summary of code
with reference to
FRP principles
followed.
Demonstrates
some
understanding of
FRP and how it
was used to
manage state.
Some justification
for design choices
with some focus
on why.

Clearly written and
concise. Provides
a good summary
of code. Design
choices are
justified and
considers
tradeoffs. Relates
design choices to
FRP and course
content. Good
understanding of
FRP and pure
state
management.

Clearly written and
concise. Highlights
only key aspects
of the code.
Strong
understanding of
FRP and how it is
used to manage
state. Design
choices are well
justified, and
considers
non-trivial
alternatives and
tradeoffs.

Features Marks Running total Classification

Notes are read from the
given CSV file 0.25 0.25

Minimum (≤ 70)

Circles corresponding to
each note move down from
the top continuously 0.25 0.5

Notes not for the current
instrument are played in
the background 0.25 0.75

Timing of the notes aligns
with CSV file 0.25 1

Score 0.25 1.25

Game ends when the song
ends 0.25 1.5

Notes are played when a
key is pressed (correct
notes if pressed at the right
time, otherwise a random
note) 0.5 2

Score multiplier 0.25 2.25

Full (≤ 90)
Note tails have correct
length corresponding to
length of note if note is 0.25 2.5



longer than one second

Note tails move down
along with the circle
continuously 0.25 2.75

Notes with tail stop playing
when key is let go 0.25 3

Notes with tails must be
held for correct duration to
be played correctly 0.5 3.5

Advanced feature 0.5 4 Advanced (90+)

How to get an HD or High HD
To achieve a mark in the HD range, you need to implement a complete game with
good style. To get in the high HD range, you will also need to implement advanced
features.

One or more of the following (or something of your own devising with a similar
degree of complexity) done well (on top of the basic functionality described above)
will earn you a high HD, provided it is implemented using the functional programming
ideas we have covered in lectures and classes:

- Create unit tests and create a file tests/main.test.js which are
comprehensive and guided the development of the program

- Ability to pause/restart a game
- The ability for users to choose a song for your game
- Power ups or Multipliers for some notes, which give bonus scores to the user.
- Advanced (not recommended unless you already know how): Make a

distributed multiplayer version, wrapping the comms in Observable (you’ll
have to provide your own server for this).

In general, additional features for achieving HD and high HD will have to
non-trivially impact your state management and/or overall complexity of the
game. For example, a power-up that changes the speed of the notes does not
require interesting usage of state on its own, but if power-ups decay over time, then
that would be more interesting and non-trivial.

Note that adding features will grant you a higher grade under the condition that it
is done in proper Functional and FRP style. For an example of the proper style,
refer to the example Asteroids Game described in the Course Notes.

https://tgdwyer.github.io/asteroids/


Tips and suggestions
These are not part of the explicit requirements, but are things we may look at as part
of the marking criteria. For example, poor choices of variable names may not have
an explicit deduction but may impact your code quality mark as it makes the code
hard to read.

Tips for getting started.
- Complete the Week 3-5 RxJS exercises and begin studying Observable in the

course notes.
- Once you have completed the above, work through the example Asteroids

Game described in the Course Notes. Follow the same framework to begin
adding functionality to main.ts as above.

More tips.
- Finish all the JavaScript and TypeScript exercises and the course notes FRP

material first. They are designed to give you the skills you need to prepare for
this assignment

- Come to the workshops and applied sessions for important tips and
assistance

- Attend consultations given by the teaching team. They are often sparse or
empty around the time assignments are released, so it can be a great
opportunity to get more detailed guidance and feedback

- Any general questions should be directed to the Ed forums when possible.
However, try to avoid posting potential solutions. If you cannot make the
consultations, you may make a private post for the assignment with your
code.

- Your code should include brief comments to explain logic and design choices
where necessary, or to refer to detailed explanations in your report. Please
do not add comments that are self-evident from the code, e.g.

const x = 1; // variable x is set to 1.
- Start as soon as possible. Do not leave the assignment until it’s too late.

Recommended coding practices
- Structure your program in a consistent and coherent manner (group relevant

functions, declarations, and variables together)
- Use block/section comments to clearly lay out each part of your code
- Use nice indenting and formatting

- By default prettier is given to you and is integrated with VSCode, this
includes format on save by default.

- Follow the instructions in the README to manually format your code.
- If you choose to use a different IDE, it will be left up to you to set up the

formatter to your own satisfaction.

https://tgdwyer.github.io/functionalreactiveprogramming/
https://tgdwyer.github.io/asteroids/
https://tgdwyer.github.io/asteroids/
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode


- Use camelCase for names, UpperCamelCase for types, and UPPER_CASE
for constants



Changelog


