
Université d’Ottawa
Faculté de génie

École de science
d’informatique
et de génie électrique

 University of Ottawa
Faculty of Engineering

School of Electrical

Engineering
and Computer Science

Assignment 0

CSI2120 Programming Paradigms
Sommer 2020

Part 1 and 2 due on June 22nd, 2020 before 11:00 pm in Virtual Campus

Part 3 and 4 due on July 26th, 2020 before 11:00 pm in Virtual Campus

[12+12 marks]

Problem Description

This assignment asks you to implement solutions to the optimal assignment problem. We look at in the

context of visual face tracking. We assume that we have implemented some neural network-based face

detector which in each video frame detects all faces in the frame. Below is an example from the face

detector running in a House-of-Commons recording.

© Cable Public Affairs Channel Inc. (“CPAC”)

We get therefore a list of detected faces in one frame and another list of faces in the next frame. We

would like to know which face in the list of the first frame matches which face in the second frame. Our

matching algorithm is to find the optimal match of faces based on some criteria. A simple criterion is the

CSI 2120 page 2

Euclidian distance between the centre of the first detection. Consider the following simple example with

only 3 detected faces in each frame.

Frame 1:

Face Label Upper-Corner Width in X Height in Y

X Y

A 100 80 41 52

B 300 392 32 45

C 405 160 28 31

Frame 2:

Face Label Upper-Corner Width in X Height in Y

X Y

I 300 120 43 51

II 312 236 28 40

III 395 241 25 30

Based on these detections and the Euclidean cost function between the box centers, we can construct a

3x3 table. We round the cost to integer values which prevents issues with floating point calculations.

 I II III

A 205 254 324

B 269 159 183

C 102 123 81

We could now simply try all possible assignments:

{(𝐴, 𝐼), (𝐵, 𝐼𝐼), (𝐶, 𝐼𝐼𝐼)}, {(𝐴, 𝐼), (𝐵, 𝐼𝐼𝐼), (𝐶, 𝐼𝐼)},

{(𝐴, 𝐼𝐼), (𝐵, 𝐼), (𝐶, 𝐼𝐼𝐼)}, {(𝐴, 𝐼𝐼), (𝐵, 𝐼𝐼𝐼), (𝐶, 𝐼)},

{(𝐴, 𝐼𝐼𝐼), (𝐵, 𝐼), (𝐶, 𝐼𝐼)}, {(𝐴, 𝐼𝐼𝐼), (𝐵, 𝐼𝐼), (𝐶, 𝐼)}

In our example, we have an optimal solution {(𝐴, 𝐼), (𝐵, 𝐼𝐼), (𝐶, 𝐼𝐼𝐼)} with a total cost of 445.

There are 3 ∗ 2 ∗ 1 possible assignments, or in general 𝑛 ∗ (𝑛 − 1) ∗ … ∗ 1 = 𝑛! In other words, trying

all possibilities with a large number of detection becomes, very quickly prohibitively expensive to

calculate.

CSI 2120 page 3

Fortunately, there is a much more efficient algorithm which run 𝑂(𝑛^3). It proceeds in five steps:

1. Row reduction

2. Colum reduction

3. Test for an optimal assignment, if an optimal assignment is
found, go to step 5

4. Shift zeros, go to step 3

5. Making the final assignment

This is the so-called Hungarian algorithm due to Kuhn-Munkres. The reduction steps are simple: In each

row or column we need to find the minimum and subtract it from all values in that row or column,

respectively. The test for an optimal assignment involves selecting a minimum number of horizontal and

vertical lines crossing out rows or columns which cover all entries equal 0. If we can cover the zeros

with n lines, then we can go to Step 5, otherwise we have to go to Step 4. In Step 5, we need to pick

exactly one 0 entry in each row and column. If there is more than one way to do so, than there is more

than one optimal assignment. Step 4 is only needed if we did not find a solution to cover all 0 with n

lines but rather the zeros can be covered with less than n lines. In Step 4, the zeros are shifted by a two

step process: First, we find the smallest value not covered by a line and subtract it from all uncovered

values. This will become our new 0. Secondly, we add this value to all values covered by a row and

column line. Than we can go back to Step 3. Note that this loop from step 3 to step 4 and back to step 3

may be needed at most 𝑂(𝑛) times. You can find an excellent explanation video on youtube

https://www.youtube.com/watch?v=cQ5MsiGaDY8

The most difficult part of the algorithm is finding the minimum lines to cover all 0 in step 3. Below is

pseudocode for this step with its 5 sub steps.

// 3.a

// Mark the first unmarked 0 in each row as assigned

// and cross out others in the row and in the newly assigned col

// This is the same as step 5 assuming we always pick the first 0

for r in rows

 first = true

 for c in cols

 if A(r,c) = 0

 if first

 A(r,c) is assigned; first = false

 for rr in rows

 if A(rr,c) = 0 and r != rr

 A(rr,c) is crossed out

 else

 A(r,c) is crossed out

CSI 2120 page 4

// 3.b

// Ticking rows

for r in rows

 tick(r) = true

 for c in cols

 if A(r,c) is assigned

 tick(r) = false

// 3.b

// Ticking cols

for r in rows

 if not(tick(r)) continue

 for c in cols

 if A(r,c) is crossed out

 tick(c) = true

// 3.c

// Ticking rows again

for c in cols

 if not(tick(c)) continue

 for r in rows

 if A(r,c) is assigned

 tick(r) = true

// 3.d

// Go back to step 3.b unless no new ticks were made

// 3.e

// Draw lines for all ticked columns and all unticked rows.

for r in rows

 if not(tick(r))

 line(r) = true

 else

 line(r) = false

for c in cols

 if tick(c)

 line(c) = true

 else

 line(c) = false

CSI 2120 page 5

Part 1: Object-oriented solution (Java) [6 marks]

Create the classes needed to solve the visual face tracking problem based on the Hungarian algorithm as

exactly as described above. Your program must be a Java application called FaceTracker that takes

as input the names of two files containing all detections for two frames as csv files. Your program must

print the optimal assignment to a csv file called tracker_java_n.csv where n is the size of in the

problem. The file should have n rows and 2 columns corresponding to one match per row and the id of

the detection in the two columns (see the attached example). The file is to be saved in the current

directory. If there is more than one optimal assignment, your implementation must simply return one of

them. If the number of detections is not the same in each frame (i.e., your cost matrix would not be

square), your implementation can simply throw an exception.

Your implementation must follow an object-oriented design for full marks. You must at least use

separate classes for reading and holding the face detection, for calculating the matching cost, for the

Hungarian algorithm and for the optimal assignment. Your implementation must print the cost matrix at

the beginning and after each step of the main algorithm. Make sure to print out the row and column

numbers covered by lines after step 3. Your implementation must also save the initial cost matrix to a

csv-file.

The above cost function is the Euclidean distance. You must design and use at least one alternative cost

function which the user can select, e.g., matching the area of the detected boxes or the aspect ratio of the

box or any combinations of criteria. Give an equation how you calculate the cost along with your UML

diagram.

In addition to the source code, you must also submit a UML class diagram showing all classes, their

attributes, methods, and associations. Hand-drawings are not acceptable (if you are looking for a

drawing program, you can use draw.io). You can not use static methods (except main).

Part 2: Concurrent solution (Go) [6 marks]

Create a Go application that implements the Hungarian algorithm. Your Go application is to read a cost

matrix from a csv file. Your program must produce a Go executable called face_tracker.exe that

takes as input the name of the csv-file for the cost matrix. Your program must save the optimal

assignment in a file tracker_go_n.csv where n is the size of in the problem with the same format

as in Part 1. As for Part 1, your implementation must print the cost matrix at the beginning and after

each step of the main algorithm. Make sure to print out the row and column numbers covered by lines

after step 3.

Your program must execute the row reduction in step 1 concurrently for each row and in step 2 the

column reduction concurrently for each column. Note that you must make sure that all go routines for

step 1 have finished before starting step 2. You will not receive full marks if your solution does not run

concurrently, even if you use the keywords go and/or channel.

You must follow proper imperative and concurrent design for full marks including the creation and use

of packages.

CSI 2120 page 6

Part 3: Logic solution (Prolog) [6 marks]

Create the following Prolog predicate

hungarianMatch(CostMatrix, OptimalAssign, OptimalCost)

that is true if the Hungarian matching problem with the given cost matrix by the optimal assignment

with an optimal cost.

Your solution for the predicate hungarianMatch/3 must function as a predicate with all three

parameters instantiated but also find all optimal assignments for full marks. Your predicate is to

produce one optimal assignment at a time and using the ; in the interpreter, the next optimal assignment

is found. Your implementation should follow the generate-and-test approach which is O(n!). Don’t use

test cases that are too large as they would take a long time.

Create also the following two Prolog helper predicates, to read the cost matrix (as in the attached

example) and to save one optimal assignment, respectively.

readCostMatrixCSV("face_cost3.csv", CostMatrix)

saveOptimalAssignment(OptimalAssign, "tracker_prolog_3.csv")

Part 4: Functional solution (Scheme) [6 marks]

Create a Scheme function that implements the Hungarian algorithm. Your Scheme application is to read

a cost matrix from a csv file. Your function prototype must work as follows:

(hungarianMatch (readCostMatrixCSV "face_cost3.csv")

"tracker_scheme_3.csv")

 (("A" "I") ("B" "II") ("C" "III"))

Your function takes as input the cost matrix and a file name to save the optimal assignment to as a side

effect. The format of the csv file should be the same as in Part 1. It is suggested that you use

tracker_scheme_n.csv where n is the size of in the problem as a file name. As for Part 1, your

implementation must print the cost matrix at the beginning and after each step of the main algorithm.

Make sure to print out the row and column numbers covered by lines after step 3.

CSI 2120 page 7

Your solution must follow proper functional design for full marks. If you are using and manipulating

variables with set! and/or use define for variables, you are likely to use an imperative style and you

will lose marks.

