
Assignment 1: Breakout in MIPS
version: 1.0 last updated: 2024-06-11 12�00�00

You may find the Assignment 1 overview video to be a good starting point:

COMP1521 24T2 Assignment 1 OverviewCOMP1521 24T2 Assignment 1 Overview

Aims
to give you experience writing MIPS assembly code

to give you experience translating C to MIPS

to give you experience with data and control structures in MIPS

Getting Started
Create a new directory for this assignment called breakout, change to this directory, and fetch the provided code by
running these commands:

mkdir -m 700 breakout
cd breakout
1521 fetch breakout

If you're not working at CSE, you can download the provided files as a zip file or a tar file.

This will add the following files into the directory:

breakout.s: a stub MIPS assembly file to complete.

breakout.c: a reference implementation of Breakout in C.
breakout.simple.c: a copy of the reference implementation of Breakout, for you to simplify.
input.txt: example input file.
breakout.mk: a make fragment for compiling breakout.c.

Breakout: The Game
breakout.c is an implementation of a version of Breakout, a popular and influential video game.

An example game of Breakout can be seen to the right.

A game of Breakout takes place on a 2D grid, where the player must move a paddle to bounce a ball (*) into a group
of bricks (digits).

You can move the paddle left (a and A) and right (d and D).

1521 mipsy breakout.s
Welcome to 1521 breakout! In this game you
control a paddle (---) with
the a and d (or A and D for fast movement)
keys, and your goal is
to bounce the ball (*) off of the bricks
(digits). Every ten bricks
destroyed spawns an extra ball. The . key
will advance time one step.

Enter the width of the playing field: 12

 SCORE: 0
==============
| |
| |
|000111222333|
|000111222333|
|000111222333|
|000111222333|
|000111222333|
|000111222333|
| |
| |
*
 >> ;
 SCORE: 5
==============
| |
| |
|000111222333|
|000111222333|
|000111222333|
|000111222333|
|000111222333|
|000 222333|
| * |
| |
| |
| ------ |
 >> q

Hitting bricks with the ball will destory the bricks, and

reward the player with score points. Every 10 bricks

destroyed will spawn a new ball, with up to 3 balls on the

screen at any given time.

If a ball leaves the bottom of the screen then it is

destroyed, and if there are no more balls left the game

ends.

To get a feel for this game, try it out in a terminal:

dcc breakout.c -o breakout
./breakout

You should read through breakout.c. There are
comments throughout it that should help you understand

what the program is doing — which you'll

need for the next part of the assignment.

breakout.s: The Assignment
Your task in this assignment is to implement breakout.s
in MIPS assembly.

You have been provided with some assembly and some

helpful information in breakout.s. Read through the
provided code carefully, then add MIPS assembly so it

executes exactly the same as breakout.c.

The functions run_command, print_deubg_info and

print_screen_updates have already been translated to

MIPS assembly for you.

You have to implement the following functions in MIPS

assembly:

print_welcome
main
read_grid_width
game_loop
initialise_game
move_paddle
count_total_active_balls
print_cell
register_screen_update
count_balls_at_coordinate
print_game
spawn_new_ball
move_balls
move_ball_in_axis
hit_brick
check_ball_paddle_collision
move_ball_one_cell

[citation needed]

You must translate each function separately to MIPS assembler, following the standard calling conventions used in

lectures. When translating a function, you must not make any assumptions about the behaviour or side effects of any

other function which is called.

Subsets
This assignment is split into four subsets. Later subsets will involve more complex translation.

Subset Functions Performance Weight

Subset 0
print_welcome
main

10%

Subset 1

read_grid_width
game_loop
initialise_game
move_paddle
count_total_active_balls
print_cell

45%

Subset 2

register_screen_update
count_balls_at_coordinate
print_game
spawn_new_ball
move_balls

25%

Subset 3

move_ball_in_axis
hit_brick
check_ball_paddle_collision
move_ball_one_cell

20%

Commands
The run_command function calls various other functions. When translating you should follow the exact behaviour of

the C code, however when testing you may find it useful to consult the following table of commands.

Command Description Function called

a Move the paddle one cell left move_paddle

d Move the paddle one cell right move_paddle

A Move the paddle three cells left move_paddle

D Move the paddle three cells right move_paddle

. Simulate the movement of the ball(s) move_balls

; Simulate the movement of the ball(s) for 3 steps move_balls

, Simulate the movement of the ball(s) for ⅓ of a step move_balls

? Output the internal state of the game print_debug_info

h Output the welcome message print_welcome

s Output changes to the screen (used by play-breakout) print_screen_updates

p Print the game, and turn off auto-printing print_game

q Quit the game —

Running & Testing
To run your MIPS code, simply enter the following in your terminal:

1521 mipsy breakout.s

Once you have finished your translation, to test your implementation, you can compile the provided C

implementation, run it to collect the expected output, run your assembly implementation to collect observed output,

and then compare them.

The game takes a lot of input, so it's a good idea to write a file with the input you want to test, and then pipe that into

your program.

You have been given a file called input.txt as an example.

dcc breakout.c -o breakout
cat input.txt | ./breakout | tee c.out
cat input.txt | 1521 mipsy breakout.s | tee mips.out
diff -s c.out mips.out
Files c.out and mips.out are identical

Try this for different sequences of inputs. When testing some functions you may find using the ? command (which

calls print_debug_info) to be useful.

Hints
You should implement all the functions from one subset before moving on to the next.

You may find the provided run_command, print_debug_info and print_screen_updates function implementations

to be useful guidance for your implementation including comments, label names, indentation and register usage.

Simplified C code
You are encouraged to simplify your C code to remove any loop constructs and if-else statements, and test that your

simplified code works correctly before translating it to MIPS, in a separate file breakout.simple.c.

This file will not be marked - you do not need to submit it.

In order to allow you to check that your simplified code works correctly, we have provided a simple set of automated

tests.

You can run these tests by running the following command:

1521 autotest breakout.simple

An example game of Breakout

Assumptions, Clarifications, and Restrictions
Like all good programmers, you should make as few assumptions as possible.

Select to toggle an example game of Breakout

Your submitted code must be hand-written MIPS assembly, which you yourself have written.

You may not submit code in other languages.

You may not submit compiled output.

You may not copy a solution from an online source. e.g. Github.

Your functions will be tested individually. They must exactly match the behaviour of the corresponding C function

and they must follow MIPS calling conventions.

The C code defines constants using #define. Your MIPS translation should use the corresponding provided named

constants, in the places where a #define is used in the C code. You should not use a #define constant in your MIPS

translation if it is not used in the corresponding part of the C code.

There will be a correctness penalty for assignments that do not follow standard MIPS calling conventions including:

Function arguments are passed in registers $a0..$a3.

Function return values are passed in register $v0

Values in registers $s0..$s7 are preserved across function calls.

If a function changes these registers, it must restore the original value before returning.

The only registers' values that can be relied upon across a function call are $s0..$s7, $gp, $sp, and $fp.
All other registers must be assumed to be have, an undefined value after a function call, except $v0 which has

the function return value.

If you need clarification on what you can and cannot use or do for this assignment, ask in the class forum.

You are required to submit intermediate versions of your assignment. See below for details.

Breakout wrapper
If you complete this assignment, you may notice that the finished game is not particularly fun to play. To make the

game more interesting to play, you can run a wrapper script that adds extra functionality to your MIPS translation. In a

directory which contains your completed breakout.s, run:

1521 play-breakout 60

You can change the parameter 60 to other numbers for different grid widths. You can also optionally supply another

parameter slow, medium (which is the default), fast or increasing to alter the game speed. For example, this will

start a game with fast speed and a grid width of 42:

1521 play-breakout 42 fast

This adds colour and automatic time progression amongst other things. Inputs from the set aAdD are recognised. You

may need to experiment with which terminal you use as well as terminal size to get the best playing experience. Note

that this wrapper is just for fun, there are no marks associated with whether or not your translation works

with the wrapper script.

Change Log
Version 1.0

(2024-06-11 12�00�00)

Initial release

Assessment
Testing
We have provided some automated tests to help you check the correctness of your translation. To run all the

provided tests, execute the following command:
1521 autotest breakout

Some of these tests check only a specific function, and some test your whole program. To run all the tests for a

specific function, pass the name of the function to autotest. For example, to run all the tests for the print_welcome
function, run the command:
1521 autotest breakout print_welcome

You can also run all the autotests for a particular subset. For example, to run all the autotests for subset 1, run the

command:
1521 autotest breakout S1

To run the autotests which test your program as a whole, run the command:
1521 autotest breakout whole_prog

Some tests are more complex than others. If you are failing more than one test, you are encouraged to focus on

solving the first of those failing tests. To do so, you can run a specific test by giving its name to the autotest
command:
1521 autotest breakout print_welcome_S0_0

Whilst we can detect that errors have occurred, it is often substantially harder to explain what that error was.

The errors from 1521 autotest will be less clear and useful than in labs.

You will need to do your own debugging and analysis.

1521 autotest will not test everything. You are strongly encouraged to do your own testing. The provided autotests

are less comprehensive for later subsets.

Whilst the function autotests for subset 0, 1 and 2 check for your conformance to the MIPS calling convention ('strict'

autotests), the subset 3 autotests will not check whether your code follows the MIPS calling convention. However,

the marking tests will check for conformance to the MIPS calling convention. This means that it is important that you

check yourself that your code follows the MIPS calling convention, particularly for your subset 3 code.

Submission
When you are finished working on the assignment, you must submit your work by running give:

give cs1521 ass1_breakout breakout.s

You must run give before Week 5 Friday 18�00�00 to obtain the marks for this assignment. Note that this is an

individual exercise, the work you submit with give must be entirely your own.

You can run give multiple times.

Only your last submission will be marked.

If you are working at home, you may find it more convenient to upload your work via give's web interface.

You cannot obtain marks by emailing your code to tutors or lecturers.

You can check your latest submission on CSE servers with:

1521 classrun check ass1_breakout

You can check the files you have submitted here.

Manual marking will be done by your tutor, who will mark for style and readability, as described in the Assessment

section below. After your tutor has assessed your work, you can view your results here; The resulting mark will also

be available via give's web interface.

Due Date
This assignment is due Week 5 Friday 18�00�00 (2024-06-28 18�00�00).

The UNSW standard late penalty for assessment is 5% per day for 5 days - this is implemented hourly for this

assignment.

Your assignment mark will be reduced by 0.2% for each hour (or part thereof) late past the submission deadline.

For example, if an assignment worth 60% was submitted half an hour late, it would be awarded 59.8%, whereas if it

was submitted past 10 hours late, it would be awarded 57.8%.

Beware - submissions 5 or more days late will receive zero marks. This again is the UNSW standard assessment

policy.

Assessment Scheme
This assignment will contribute 15 marks to your final COMP1521 mark.

80% of the marks for assignment 1 will come from the performance of your code on a large series of tests.

20% of the marks for assignment 1 will come from hand marking. These marks will be awarded on the basis of clarity,

commenting, elegance and style. In other words, you will be assessed on how easy it is for a human to read and

understand your program.

An indicative assessment scheme for performance follows.

The lecturer may vary the assessment scheme after inspecting the assignment submissions, but it is likely to be

broadly similar to the following:

100% for performance implements all behaviours perfectly,

following the spec exactly.

85% for performance implements all simple and most difficult functions correctly.

65% for performance implements all simple and

some moderate difficulty functions correctly.

≤ 50% for performance good progress,

simple functions work correctly.

An indicative assessment scheme for style follows.

The lecturer may vary the assessment scheme after inspecting the assignment submissions, but it is likely to be

broadly similar to the following:

100% for style perfect style

90% for style great style, almost all style characteristics perfect.

80% for style good style, one or two style characteristics not well done.

70% for style good style, a few style characteristics not well done.

60% for style ok style, an attempt at most style characteristics.

≤ 50% for style an attempt at style.

An indicative style rubric follows.

The lecturer may vary the assessment scheme after inspecting the assignment submissions, but it is likely to be

broadly similar to the following:

Formatting (8/20):

Whitespace

Indentation (consistent, tabs or spaces are okay)

Line length (below 120 characters unless very exceptional)

Line breaks (using vertical whitespace to improve readability)

Documentation (12/20):

Header comment (with name, zID, description of program)

Function comments (above each function with a description)

Sensible commenting throughout the code

Descriptive label names, indicating structure

Note that the following penalties apply to your total mark for plagiarism:

0 for

assignment 1

knowingly providing your work to anyone

and it is subsequently submitted (by anyone).

0 FL for

COMP1521

submitting any other person's work; this includes joint work.

academic

misconduct

submitting another person's work without their consent;

paying another person to do work for you.

Intermediate Versions of Work
You are required to submit intermediate versions of your assignment.

Every time you work on the assignment and make some progress you should copy your work to your CSE account

and submit it using the give command above. It is fine if intermediate versions do not compile or otherwise fail

submission tests. Only the final submitted version of your assignment will be marked.

Assignment Conditions
Joint work is not permitted on this assignment.

This is an individual assignment. The work you submit must be entirely your own work: submission of work even

partly written by any other person is not permitted.

Do not request help from anyone other than the teaching staff of COMP1521 — for example, in the course forum,

or in help sessions.

COMP1521 24T2: Computer Systems Fundamentals is brought to you by

the School of Computer Science and Engineering

at the University of New South Wales, Sydney.

For all enquiries, please email the class account at cs1521@cse.unsw.edu.au

CRICOS Provider 00098G

Do not post your assignment code to the course forum. The teaching staff can view code you have recently

submitted with give, or recently autotested.

Assignment submissions are routinely examined both automatically and manually for work written by others.

Rationale: this assignment is designed to develop the individual skills needed to produce an entire working

program. Using code written by, or taken from, other people will stop you learning these skills. Other CSE

courses focus on skills needed for working in a team.

The use of code-synthesis tools, such as GitHub Copilot, ChatGPT, Google Bard, etc. are not permitted on

this assignment.

Rationale: this assignment is designed to develop your understanding of basic concepts. Using synthesis tools

will stop you learning these fundamental concepts, which will significantly impact your ability to complete future

courses.

Sharing, publishing, or distributing your assignment work is not permitted.

Do not provide or show your assignment work to any other person, other than the teaching staff of COMP1521.

For example, do not message your work to friends.

Do not publish your assignment code via the Internet. For example, do not place your assignment in a public

GitHub repository.

Rationale: by publishing or sharing your work, you are facilitating other students using your work. If other

students find your assignment work and submit part or all of it as their own work, you may become involved in

an academic integrity investigation.

Sharing, publishing, or distributing your assignment work after the completion of COMP1521 is not

permitted.

For example, do not place your assignment in a public GitHub repository after this offering of COMP1521 is over.

Rationale: COMP1521 may reuse assignment themes covering similar concepts and content. If students in future

terms find your assignment work and submit part or all of it as their own work, you may become involved in an

academic integrity investigation.

Violation of any of the above conditions may result in an academic integrity investigation, with possible penalties up

to and including a mark of 0 in COMP1521, and exclusion from future studies at UNSW. For more information, read

the UNSW Student Code, or contact the course account.

