
Lab 6: Delta
Spring Semester 2020

Due: 6 April, at 8:00 a.m. Eastern Time

Corresponding Lecture: Lesson 10 (Delta Debugging)

Objective
In this lab, you will implement the Delta Debugging algorithm using Java to find 1-minimal
failing test cases for buggy text encoder programs using both line and character granularity.

Resources

1. Delta Debugging webpage: ​http://www.st.cs.uni-sb.de/dd/

Caution

Dr. Zeller, the author of the Delta Debugging technique, and several other people have published
implementations of the Delta Debugging algorithm. While we encourage you to research and
read more about the algorithm, looking at someone else’s implementation, will almost certainly
cause your implementation to be similar to theirs. Therefore, make sure that you do not view or
reference any implementations or code of the algorithm.

Setup
1. Download ​delta.zip ​ from Canvas and decompress it. It will produce the directory

delta ​ where you should find:
○ DeltaDebug.java ​ - skeleton file for you to implement your algorithm in
○ MANIFEST.MF ​ ​- Manifest file for ​DeltaDebug.java ​ program (do not modify)
○ DeltaDebugTest ​ - Program to run and test your program
○ deltadebugtest.properties ​ - Configuration file that ​DeltaDebugTest

reads in
○ SecretCoder ​ - first buggy encoder program
○ MessageCoder ​ - second buggy encoder program
○ long_failing_text.txt ​ - an input text file on which each buggy encoder

program fails.
○ [prg]_min_failing_text_line.txt ​: the correct minimal test input that

should be produced by your Delta Debugging program on ​SecretCoder ​ ​(“sc”)
or​ ​MessageCoder ​ ​(“mc”)​ for part 1 (line granularity)

○ [prg]_min_failing_text_char.txt ​: the correct minimal test input that
should be produced by your Delta Debugging program on ​SecretCoder ​ ​(“sc”)
or​ ​MessageCoder ​ ​(“mc”)​ for part 2 (character granularity)

http://www.st.cs.uni-sb.de/dd/

2. The ​deltadebugtest.properties ​ file works with the ​DeltaDebugTest ​ program
to test ​DeltaDebug.java ​. The following fields are required:

○ granularity ​: ​line ​ or ​char
○ path.to.program ​: path to program (e.g. ​./SecretCoder ​)
○ error ​: type of error (e.g.

java.lang.ArrayIndexOutOfBoundsException ​, or other)
○ path.to.input.file ​: path to the input file
○ output.file ​: name of the output file

3. Each time you change the ​DeltaDebug.java ​ file, you need to compile and compress
the program with the following command lines:

javac DeltaDebug.java

jar cvmf MANIFEST.MF DeltaDebug.jar DeltaDebug.class
4. After compiling the ​DeltaDebug.java ​ file, you may execute the ​DeltaDebugTest

program as follows:
./DeltaDebugTest

Part 1: Line Granularity

Program Description

SecretCoder ​ ​and​ ​MessageCoder ​ implement a Caesar (or shift) cipher with a right shift of
98 places. Instead of the regular alphabet, these programs are intended to encode the 128
characters in the ASCII character set (value 0 to 127). When the programs run successfully, they
create an output file (e.g. ​mc_output.txt/sc_output.txt ​) with the encoded contents of the
input file.

The programs can be executed directly in the command line, followed by a single input that is
the path to the input file, as shown below:

./SecretCoder <input file>

Note: In the VM, you may need to change the access mode of the executables in order to run
them:

chmod +x <PROGRAM(s)>

Problem Summary

The bug in ​SecretCoder ​ occurs when ​long_failing_text.txt ​ contains a non-ASCII
character. The program is using the UTF-8 character set to determine the number of characters in
the file and creates a char array to store the encoded values for printing. It does not take into
account that non-ASCII characters in the UTF-8 character set could be included into the file and
these will take up more than one byte. When a non-ASCII character is read into the file as two or

more bytes, the char array runs out of room and throws a
java.lang.ArrayIndexOutOfBoundsException ​.

MessageCoder ​ is able to handle all characters, but the bug in the encoding program
MessageCoder ​ occurs when ​long_failing_text.txt ​ contains a specific pattern: any
four-letter pattern of alternating caps starting with a capital letter (e.g. “JaVa”). When this
pattern is detected, the following exception occurs:
java.lang.IllegalArgumentException

Your task is to implement the delta debugging algorithm presented in the lecture to obtain the
minimal test case on which ​SecretCoder ​ fails for
java.lang.ArrayIndexOutOfBoundsException ​ and the minimal test case on which
MessageCoder ​ fails for ​java.lang.IllegalArgumentException ​.

To accomplish this task, we have provided a framework and you will need to implement the
deltaDebug ​ method in ​DeltaDebug.java ​. For part one of the lab, we will use line
granularity. We have provided a ​DeltaDebugTest ​ program that you can use to run
DeltaDebug ​ to test your changes. After adjusting the ​deltadebugtest.properties ​ file to
reflect the desired settings and compiling/compressing ​DeltaDebug.java ​, execute by running
the following command:

./DeltaDebugTest

Note that ​DeltaDebugTest ​ executable will call the ​deltaDebug ​ method in
DeltaDebug.java ​, which requires 5 parameters:

deltaDebug(Boolean char_granularity, String program,

String failing_file, String error_msg,

String final_minimized_file)

● char_granularity - If false, implement line granularity only
● program - this is the path to the program being tested
● failing_file - this is the path to the file with the large failing test case
● error_msg - this is the error message that will be used to determine if the program is

failing for the same reason as the original file or not
● final_minimized_file - this is the final file that your program should print with the

minimized input.

In this lab, the ​deltadebugtest.properties ​ file and the ​DeltaDebugTest ​ program
handle this information and call on that method. Similarly, the grading script will call the
deltaDebug ​ method directly in ​DeltaDebug.java ​. ​Therefore, it is very important that

you do not make any changes to the type or method signature of ​deltaDebug​ ​in
DeltaDebug.java​. ​If your program does not run with ​DeltaDebugTest ​, chances are that it
will not run with the autograder.

Ensure you are using the ​failing_file​ and ​final_minimized_file​ parameters for your file
names in ​DeltaDebug.java​ instead of hardcoding files because the grader will be using
additional files besides the ones provided in this lab.

We have provided an outline for some helper methods in ​DeltaDebug.java ​ that you may find
useful (there are comments in the code to explain what these do). You can modify these methods
or add new helper methods in ​DeltaDebug.java ​ in any way you see fit as long as your
algorithm is invoked by calling ​deltaDebug ​ with the original parameters.

If ​deltaDebug ​ is written correctly, executing the test program will create a 1-minimal test case
named ​my_min_failing_text_line.txt ​ (or whatever you’ve named your output file) that
is identical to the provided ​[prg]_min_failing_text_line.txt.

Verify they are identical (​including whitespace & new lines​) using the diff command (replace
‘prg’ with ‘mc’ or ‘sc’ depending on which files you are comparing):
diff my_min_failing_text_line.txt [prg]_min_failing_text_line.txt

For grading, we will also be testing your algorithm on hidden input files. We encourage you to
come up with different inputs to test how your algorithm handles different cases. Feel free to edit
deltadebugtest.properties ​ to pass in different file names for testing.

The hidden test cases will be similar in format to the provided one, but will have a different file
name, different number of lines, different failing character(s), different position for failing
character(s), or other changes appropriate for a text file. You can assume that there will be a
single failing character or pattern in the file.

Your algorithm should run in less than 5 minutes on the course VM.

If you add print statements for debugging, make sure to remove these before submission.

Part 2: Character Granularity

Now you will extend your algorithm to perform minimization at the character granularity level
when the flag is set. Make sure to minimize the file by lines as much as possible, and then switch
to character granularity when line granularity has reached its minimum.

After adjusting the granularity in ​deltadebugtest.properties ​ files to reflect the desired
settings and compiling/compressing your ​DeltaDebug.java ​ code​, you can run
DeltaDebugTest ​:

./DeltaDebugTest

If ​deltaDebug ​ method is written correctly, executing the test program will create a 1-minimal
test case named ​my_min_failing_text_char.txt ​ (or whatever you’ve named your output
file) that is identical to the provided ​[prg]_min_failing_text_char.txt.

Verify they are identical (​including whitespace​) using the diff command (replace ‘prg’ with ‘mc’
or ‘sc’ depending on which files you are comparing):
diff my_min_failing_text_char.txt [prg]_min_failing_text_char.txt

The same grading notes and 5 minute timeout limit apply as in part 1.

Items to Submit
We expect your submission to conform to the standards specified below. To ensure that your
submission is correct, you should run the provided file validator. You should not expect
submissions that have an improper folder structure, incorrect file names, or in other ways do not
conform to the specification to score full credit. The file validator will check folder structure and
names match what is expected for this lab, but won’t (and isn't intended to) catch everything.

The command to run the tool is: ​python3 zip_validator.py lab6 lab6.zip

Submit the following files in a single compressed file (​.zip​ format) named ​lab6.zip​. For full
credit, there must not be any subfolders or extra files contained within your zip file.

● DeltaDebug.java

Upload your zip file to Canvas. Make sure the spelling of the filenames and the extensions are
exactly as indicated above. Misspellings in filenames may result in a deduction to your grade.
Also double-check that you are not accidentally submitting ​DeltaDebugTest ​ or
deltadebugtest.properties ​.

Grading
Part 1:

● 8 points: For​ ​SecretCoder ​, ​DeltaDebug.java ​ correctly minimizes
long_failing_text.txt ​ to ​sc_min_failing_test_case_line.txt

● 12 points: For​ ​MessageCoder ​, ​DeltaDebug.java ​ correctly minimizes
long_failing_text.txt ​ to ​mc_min_failing_test_case_line.txt

● 30 points: Other test cases
Part 2:

● 8 points: For​ ​SecretCoder ​, ​DeltaDebug.java ​ correctly minimizes
long_failing_text.txt ​ to ​sc_min_failing_test_case_char.txt

● 12 points: For​ ​MessageCoder ​, ​DeltaDebug.java ​ correctly minimizes
long_failing_text.txt ​ to ​mc_min_failing_test_case_char.txt

● 30 points: Other test cases

