
Systems Programming Project 3

April 16, 2024

1 Introduction

For our final project, you will be implementing a peer-to-peer chat program. This is a non-trivial
program; our base repository for the project is of meaningful size:

===============================================================================

Language Files Lines Code Comments Blanks

===============================================================================

Markdown 1 59 0 33 26

TOML 3 58 43 4 11

-------------------------------------------------------------------------------

Rust 25 3740 2540 560 640

|- Markdown 21 246 0 225 21

(Total) 3986 2540 785 661

===============================================================================

Total 29 3857 2583 597 677

===============================================================================

You can accept the GitHub classroom assignment (which is forked from the template repository)
at https://classroom.github.com/a/tB4hTcTC.

Please note the README.md file in the repository; it has instructions on how to run some of the
binaries. You should go ahead and update this README.md as appropriate for your submission.

This project is an iteration on the 2022 class project, and has undergone some refinement and
refactoring, however, it is still not “perfect.” In fact, the current template repository’s code does
not include the fancy UI as I need to finish updating that for newer library versions.

It will be iterated on again for future classes. With this in mind, there are definitely rough edges,
places where the code is confusing or verbose, and many places where the code can be improved
in terms of both ergonomics (e.g., the API) as well as refactoring (making more structs, renaming
things, etc.).

1



ASK QUESTIONS IF YOU DON’T UNDERSTAND SOMETHING IN THE CODE! It might be
that it’s something that I can easily explain, something that I’m aware of but just didn’t have time
to refactor/fix, or it might be a real problem/bug in the code. I wrote all of this, so I should be
able to help you figure out what is going on.

2 Project Description

This project is about building a peer-to-peer chat client. We have seen what a very basic chat
server looks like. While our chat server had tons of limitations, it also ran just fine on a single
thread using async programming. For each client that connected, we started two tasks: one that
received data from the network (i.e., data from whatever client was sending us) and a second that
received data from the server (in our case, a broadcast channel that the server set up when a client
connected). Note that while both of these tasks ended up interacting with the network, they didn’t
have to. This is an important observation because it means we can launch tasks for a bunch of
different purposes, and as long as we can reduce the amount of blocking code in those tasks, we can
very efficiently scale.

2.1 Scaling with async

As a concrete example, I write a lot of data collection code (i.e., crawlers) for my research. This is
fundamentally not a CPU bound problem because it involves: 1) a lot of network traffic from the
Internet and 2) relatively loose deadlines. The design pattern I use is, at its core, a producer/con-
sumer system where different “jobs” are run for each chunk of the logic that drives the crawling
process.

I use an open source server that scheduling of jobs. I.e., handing out jobs to a set of waiting
“workers” that process those jobs. The server has a protocol to communicate with clients, but it is
agnostic about how that client works and how jobs are actually executed by workers.

I have my own client, written in Rust. It is relatively simple, and handles a lot of things that are
relevant specifically to crawling social media data, e.g., rate limiting. At its core, it manages a
collection of long lived workers, where each worker runs in its own task. My library can scale to
tens of thousands of concurrently executing workers, on a single thread.

However, there is relatively little computationally expensive code involved (and when there is, that is
farmed out to a secondary service). It takes microseconds (less?) to do whatever data manipulation
and logic it takes to control the crawling process; it takes milliseconds to make a request to a web
site. Thus, the overwhelming majority time a worker is executing a job it is waiting for some I/O
request to get data. While any particular job might be “slow” to execute, we can run so many of
them concurrently that our throughput scales way higher.

2



3 bing2bing

bing2bing is the name of our peer-to-peer chat system. Our protocol is going to be more compli-
cated than the simple chat server we made in class. It will support several commands, and instead
of being simply line oriented, we will use a higher level abstraction for our wire protocol: JSON.

3.1 Frames

A valid frame in bing2bing can be composed of the following types:

• Text – a string.

• Error – an error.

• Number – an unsigned 64 bit number.

• Bulk – raw bytes.

• Bool – true/false.

• Array – an array of frames.

• Float – a 64 bit floating point.

3.2 Supported Commands

A command is a logical abstraction. they get encoded/decoded into frames and sent/received over
the wire.

We will support the following commands:

• Broadcast – deliver data (i.e., arbitrary bytes) to all peers in the network.

• Ping – allows peers to measure latency between them.

• Pong – a response to a Ping command.

• Register – register with a tracking server.

• Say – send a chat message to all peers in the network.

• Deliver – deliver data (i.e., arbitrary bytes) to a specific peer.

• Announce – a command that is propagated through the network to provide peers knowledge
about the network topography. I.e., this is how peers let each other know who they are
connected to.

3



• Whisper – send a chat message to a specific peer in the network.

• Extension – an arbitrary protocol extension. Peers that know how to handle a specific exten-
sion will handle them, peers that don’t know how to handle them will forward/broadcast on
to the rest of the network.

4 Grading

Grading will be similar to the style of Projects 1 and 2.

• -1,000 points: If you do not update CREDITS.md with the names of your group members, as well
as an honest break down of the work each group member did, you will receive NEGATIVE
ONE THOUSAND points. I.e., it would be next to impossible to get anything higher than
a zero on this project.

• -1,000 points: If running cargo fmt results in any change to your repository, you will get
NEGATIVE ONE THOUSAND points. Be sure to run cargo fmt!!!!!!!!!

• -1,000 points: No warnings should be produced when running ‘cargo check‘ or ‘cargo clippy’.

• -1,000 points: If you do not do a demo (only one group member needs to be present for a
demo), you will receive -1,000 points.

• -1,0000 points: If your implementation breaks a basic peer (i.e., it won’t work with the base
project template clients), you will lose -1,000 points.

• 1,0000 points: If your implementation breaks a basic peer for a good/justifiable reason (as
judged by Jeremy), you will get +1,000 points. I.e., you will be at net zero points for breaking
things instead of -1,000.

• 50 points: Program compiles, as well as the items noted below as required for graduate groups.

• 10 points: Implement at least one extension.

• 20 points: REQUIRED FOR GRADUATE GROUPS. Implement routing of mes-
sages. Instead of just broadcasting commands that have an expected destination (e.g., Ping,
Deliver, Whisper), use a peer’s knowledge of the network topology to route a message via
shortest path.

• 5 points: Make things fully decentralized. Our base project will make use of a distinct tracker
to let peers boostrap their first connection. It is not necessary for this to be a separate
program. Implement handling of the Register command in your peer, thus allowing any
other client to bootstrap off your peer instead of having a stand alone tracker.

• 5 points: Comprehensive documentation. Points will be determined by looking at the docu-
mentation built when running cargo doc --document-private-items --no-deps.

4



• 10 points: Performance analysis. E.g., how many connections can your peer handle? Are
there any overlay network topologies that could cause performance/robustness issues? How
well can the network handle churn (i.e., peers joining/leaving a lot)?

• 5 points: Proper error handling. There will be at least some unwraps()s in the base project.
Also, right now, most of the error handling is via very weakly developed custom error types
that could be made much better. Fix this by adding proper error handling (e.g., with the
thiserror crate) and nice error messaging. Points will be determined by how comprehensive
error handling is.

• 10 points: Fancy UI. There are a lot of opportunities here!

• 10 points: Refactoring, code clean up, and ergonomics. Clean up the code and make it
easier to use! Be sure to summarize what you have done here in a CHANGELOG.md file in your
repository.

• 5 points: Add meaningful logging. Using the tracing crate to generate logs. Points will be
determined on comprehensiveness of logs, as well as the usage of different log levels.

• Unlimited points: Cool factor. Points are determined subjectively by me, but if I find anything
about your project to be particularly unique, difficult, clever, etc., you can get some extra
points. Note that this applies to other items above. E.g., if you do something cool with
an Extension, you will get cool points in addition to the 10 points for implementing an
EXTENSION.

• Unlimited points: Bug hunting. If you find a bug in the template code, and can provide a
reproducible report to Jeremy, you will get some points.

In addition to the above, you must update the README.md to summarize what you
did and give any and all instructions on how to run things! I’m going to go off what’s
in the README.md to grade, so make sure you test all the instructions, etc.

4.1 Allowed Crates

Generally speaking, you are free to use any crates listed on https://blessed.rs, except networking
crates. I want networking to be handled online with things from the Rust standard library and
tokio.

Any crates not on Blessed.rs need to be approved by Jeremy.

Be sure to note what crates you use in your README.md!

4.2 Due Date

All code must be committed to your repositories by Thursday, May th at 23:59 PM.

Time slots for live demos will go up the last week of April.

5

7 



4.3 Academic Honesty Statement

In addition to the code in your repository, you must submit an academic honesty statement as per
the class syllabus submitted via Brightspace. If you do not upload this academic honesty statement,
you will receive a ZERO on the assignment.

REMEMBER THAT IF YOUUSE AMACHINE LEARNING TOOL THAT IS CHEAT-
ING AND YOU WILL FAIL THE CLASS!

6


