

National University of Singapore

School of Electrical and Computer Engineering

CA2 Project 2: Q-Learning for World Grid Navigation

Student: Wanry Lin

Matriculation Number: A0000001X

Email address:

EE5904 Neural Network

May 10, 2023

^ε-greedy Q-learning

I imply the Q-learning algorithm, using the reward function and with the ε -greedy exploration algorithm by setting specific $\varepsilon_k, \alpha_k, \gamma$. The Q-function serves as a metric to evaluate the value of a state-action pair (s, a) in relation to the rewards obtained when an agent performs a task. An optimal policy is achieved by maximizing the Q-function values, which are computed for all possible (s, a) pairs with respect to the task at hand. In order to obtain the Q-function, the following steps are taken:

- (1) **Initialize parameter:** Discount factor γ ; exploration probability ε_k ; learning rate ^α*k* .
- (2) Initialize Q-function.
- (3) Determine the initial state s_0 .
- (4) For time step *k*, select action α_k according to:

$$
a_k = \begin{cases} a \in \arg \max_{\hat{a}} Q_k(s_k, \hat{a}) & \text{with probability } 1 - \varepsilon_k \\ \text{an action uniformly randomly selected from all} & \text{with probability } \varepsilon_k \\ \text{actions available at state } s_k \end{cases}
$$

- (5) Apply action a_k , receive reward r_{k+1} , then observe next state s_{k+1} .
- (6) Update Q-function using Bellman equation:

$$
Q_{k+1}(s_k,a_k) = Q_k(s_k,a_k) + \alpha_k(r_{k+1} + \gamma \max_{a'} Q_k(s_{k+1},a') - Q_k(s_k,a_k));
$$

- (7) Set $k = k + 1$ and repeat for next loop.
- (8) Break the loop if one of these conditions are reached:
	- Robot reaches goal state $s_k = 100$
	- $\alpha_k < 0.005$ (optional)
	- Maximum number of time step $k_{max} = 3000$ is reached.
- (9) Run 10 times from (2) to (8) and obtain a result of a set of fixed parameter.

Task 1

Here, I set the random seed as 5904. The performance of task 1 is show:

raone 1. I diameter values and performance of \vee Elearning								
ε_k, α_k		No. of goal-reached runs	Execution time (sec.)					
	$\gamma = 0.5$	$\gamma = 0.9$	$\gamma = 0.5$	$\gamma = 0.9$				
			N.A.	N.A.				
100 $100+k$			N.A.	1.089				
$1 + \log(k)$			N.A.	N.A.				
$1+5\log(k)$			N.A.	1.7712				

Table 1: Parameter values and performance of O-Learning

The optimal policies and optimal paths are shown in Fig. 1-2.

Figure 1: Performance of $\gamma = 0.9$ and $\varepsilon_k = \frac{100}{100+1}$ $\frac{100+k}{k}$

(a) Optimal path (b) Optimal policy

Figure 2: Performance of $\gamma = 0.9$ and $\varepsilon_k = \frac{1+5\log(k)}{k}$ $\frac{\log(K)}{k}$,

Comments

- (1) Only when $\gamma = 0.9$, the robot can find the terminal. Only when $\varepsilon_k = \frac{100}{100+100}$ $\frac{100}{100+k}$ or $\pmb{\varepsilon}_k = \frac{1+5\log(k)}{k}$ $\frac{\log(K)}{k}$, the robot with exploration action can reach the goal.
- (2) The result may be not reproducible because of exploration. Therefore, I set the random seed at 5904. The execution time fluctuates because of computing resource status unstable.
- (3) The reason why $\varepsilon_k = \frac{100}{100+1}$ $\frac{100}{100+k}$ and $\varepsilon_k = \frac{1+5\log(k)}{k}$ $\frac{\log(K)}{k}$ are able to find the terminal is that their decreasing speed is more slow according to the Fig.3

Figure 3: Decreasing speeds of different ε_k , α_k expression

If the ε_k drops too fast, the exploration will be less. The robot is more easily stuck in the trap of $\arg\max_{\hat{a}} Q_k(s_k, \hat{a})$.

Task 2

To design a Q-learning using my own parameter. I firstly test some new ^ε*^k* and ^γ.

TAUIC \angle . $\gamma = [0.7, 0.8, 0.9]$ and performance of Q-Learning								
ε_k , α_k	No. of goal-reached runs			Execution time (sec.)				
	$\gamma = 0.7$	$\gamma = 0.8$	$\gamma = 0.9$	$\gamma = 0.7$	$\gamma = 0.8$	$= 0.9$		
100 $100+k$	10	10	10	0.65	0.92	1.08		
$1+5\log(k)$	9	9	7	0.82	1.06	1.04		
100 $100+\sqrt{k}$	10	10	10	0.16	0.16	0.17		
$1+10\log(k)$	10	10	10	0.69	0.63	0.82		
$exp(-0.001k)$	10	10	10	0.09	0.11	0.13		
$\overline{L^{0.1}}$	10	10	10	0.06	0.07	0.07		

 $Table 2: \gamma = [0.7, 0.8, 0.9]$ and performance of OL earning

Figure 4: Decreasing speeds of different ε_k , α_k expression

From the Table 2, I choose the best performance parameter $:\epsilon_k = \frac{1}{k^0}$ $\frac{1}{k^{0.1}}$ and γ = 0.7.

Conclusion

From this project, I review the structure of Reinforcement Learning and learn the influence on the mode with difference ε_k and γ . It is not always the complex ε_k the best. It depends on the task and a balance of damping speed and computing complexity should be reached . I also learn the Bellman equation is really important for Q-learning. In the 2nd task, I design a new ε_k inspired from the given. It decreases faster in the first 200 attempts and slower in the last attempts than other functions. Then I find the best γ via test different value on the given reward. In my opinion, this may derive to the model overfitting to task 1 dataset and perform weak in evaluation set.