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e-greedy Q-learning

I imply the Q-learning algorithm, using the reward function and with the € -greedy
exploration algorithm by setting specific &, 0, y. The Q-function serves as a metric to
evaluate the value of a state-action pair (s,a) in relation to the rewards obtained when
an agent performs a task. An optimal policy is achieved by maximizing the Q-function
values, which are computed for all possible (s,a) pairs with respect to the task at hand.

In order to obtain the Q-function, the following steps are taken:

(1) Initialize parameter: Discount factor ; exploration probability &; learning rate

O.

(2) Initialize Q-function.

(3) Determine the initial state s.

(4) For time step k, select action ¢ according to:

a € argmax QO sk, d)
a

ay =

an action uniformly randomly selected from all

actions available at state sy

with probability 1 — &

(5) Apply action ay, receive reward ry 1, then observe next state s 1.

(6) Update Q-function using Bellman equation:

Qi1 (st ak) = Q5w ar) + 0 (1 + ymax O(ses1,a') — Oxlsw )

(7) Set k = k-+ 1 and repeat for next loop.

(8) Break the loop if one of these conditions are reached:

* Robot reaches goal state s = 100
* oy < 0.005 (optional)

* Maximum number of time step &, = 3000 is reached.

(9) Run 10 times from (2) to (8) and obtain a result of a set of fixed parameter.

Task 1

Here, I set the random seed as 5904. The performance of task 1 is show:

Table 1: Parameter values and performance of Q-Learning

e o No. of goal-reached runs | Execution time (sec.)
Pk y=05 y=09 y=05] y=09
I 0 0 N.A. N.A.

100
o 0 9 NA. 1.089
Loe®) | 9 0 N.A. N.A.
Ishoelt) | g 10 NA. | 17712

with probability &



The optimal policies and optimal paths are shown in Fig. 1-2.
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Figure 1: Performance of y = 0.9 and & = %{
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Figure 2: Performance of Y= 0.9 and g, = T() ,

Comments
(1) Only when y = 0.9, the robot can find the terminal. Only when & = 158?_,{ or
& = L,fg(k), the robot with exploration action can reach the goal.

(2) The result may be not reproducible because of exploration. Therefore, I set the
random seed at 5904. The execution time fluctuates because of computing resource
status unstable.

100

(3) The reason why g, = TO0+% and g = are able to find the terminal is that

their decreasing speed is more slow according to the Fig.3

1+51og(k)
k
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Figure 3: Decreasing speeds of different &, o expression

If the & drops too fast, the exploration will be less. The robot is more easily stuck
in the trap of argmax Qg (s, ).
a

Task 2

To design a Q-learning using my own parameter. I firstly test some new & and 7.

Table 2: y=[0.7, 0.8, 0.9] and performance of Q-Learning

e o No. of goal-reached runs Execution time (sec.)
k1700k y=07]y=08y=09]y=07[y=08]7y=009
s 10 10 10 0.65 0.92 1.08
135Tog(8) 9 9 7 082 | 1.06 | 1.04
100
TG 10 10 10 0.16 0.16 0.17
11 10%og(k) 10 10 10 | 069 | 063 | 082
exp(—0.001k) | 10 10 10 0.09 0.11 0.13
T 10 10 10 0.06 0.07 0.07
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Figure 4: Decreasing speeds of different &, oy expression

From the Table 2, I choose the best performance parameter :&;, = k(+1 and y=0.7.
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Conclusion

From this project, I review the structure of Reinforcement Learning and learn the influ-
ence on the mode with difference &, and y. It is not always the complex & the best. It
depends on the task and a balance of damping speed and computing complexity should
be reached . I also learn the Bellman equation is really important for Q-learning. In the
2nd task, I design a new & inspired from the given. It decreases faster in the first 200
attempts and slower in the last attempts than other functions. Then I find the best ¥ via
test different value on the given reward. In my opinion, this may derive to the model
overfitting to task 1 dataset and perform weak in evaluation set.
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