
Arizona State University SER334: Operating Systems and System Programming
TA Edgar, ATP Acuña Revised 3/17/2023

Image Processing

Summary: In this homework, you will be implementing a program that loads an image �le, applies
�ltering to it, and saves it back to disk. You will also learn how to read and write real-world binary �le
formats, speci�cally BMP.

1 Background

In this assignment, you will write a program that applies three di�erent �lters to an image. The image will
be loaded from a BMP �le, speci�ed by the user, and then be transformed using: 1) a grayscale conversion,
2) a color shift also speci�ed by the user, or 3) a scale operation. The resulting �le will be saved back to a
BMP �le that can be viewed on the system.

This document is separated into four sections: Background, Requirements, Loading Binary Files, Include
Files, and Submission. You have almost �nished reading the Background section already. In Requirements,
we will discuss what is expected of you in this homework. In Loading Binary Files, we will discuss the BMP
�le format and how to interact with binary �les. Lastly, Submission discusses how your source code should
be submitted on Canvas.

2 Requirements [36 points]

Your program needs to implement loading a binary BMP �le, applying one or more �lters, and saving the
modi�ed image. The width and height may be of any size, but you can assume that you will be capable of
storing the image data in memory. Assume that all BMP �les are 24-bit uncompressed �les1 (i.e., compression
method is BI_RGB), which have a 14-bit bmp header, a 40-bit dib header, and a variable-length pixel array.
See Section 3 for further discussion of the BMP format. This is shown in Figure 1.

As a base requirement, your program must compile and run under Xubuntu (or another variant of
Ubuntu) 22.04. Several sample outputs are shown in subsection 2.1. Do not modify the header �les

given except to �ll in any TODOs.

� Speci�c Requirements:

� BMP Headers IO: Create structures for the headers of a BMP �le (BMP header struct and DIB
header struct) and functions that read and write them. [4 Points]

* See struct BMP_Header, struct DIB_Header, readBMPHeader, writeBMPHeader, readDIB-
Header, writeDIBHeader, makeBMPHeader, and makeDIBHeader. These functions should
be implemented in a �le called BMPHandler.c.

� Pixel IO: Create a structure that represents a single pixel (24-bit pixel struct) and the functions
for reading and writing all pixels in BMP �les. [4 Point]

* See struct Pixel, readPixelsBMP, and writePixelsBMP. These functions should be imple-
mented in a �le called BMPHandler.c.

� Input and output �le names: Read the input �le name and output �le name from the command
line arguments. The user should be required to enter the input �le name and this should be the
�rst argument. The output �le name is an �option,� it is not required and it can be in any place
in the options list. The output �le option is speci�ed by �-o� followed by the output �le name.
Validate that the input �le exists. [4 Points]

1In case you think this is making the assignment unrealistic, think again: this is the default Windows 10 BMP �le format.

1

* The input �le is the �le to read and copy.

* The output �le name is the �le to write to and copy to (the new �le created).

� Filter command line parsing: Accept an option for grayscale (black and white). This is speci�ed
by "-w". Accept options for red, green, or blue color shift. These are speci�ed by�-r� �-g� or
�-b� followed by an integer. Accept an option for scale. This is speci�ed by "-s" followed by a
�oat. Like the �-o� option described above, these can come in any order in the options list and
are optional for the user to enter. [4 Points]

� Copy images: Have the ability to copy an image from a BMP �le to a new BMP �le. [4 Points]

� Grayscale �lter (image_apply_bw): convert each RGB pixel to its grayscale equivalent. [4
Points]

* In a grayscale image, each RGB component has the same value. Use the following formula to
compute it: grayscale = 0.299R + 0.587G + 0.114B 2

* This �lter MUST happen before the color shift �lter is applied.

� Color Shift �lter (image_apply_colorshift): Shift the color of the new image before saving it,
according to the options the user entered. [4 Points]

* Color shift refers to increasing or decreasing the color in a pixel by the speci�ed amount. So,
if the user entered �-b -98� all of the blue values in a pixel would be decreased by 98.

* If no color shift option was entered for a color, do not shift it.

* After the color shift, color should be clamped to 0 ~ 255. For example, color R = 100, shift
= 200. The color R after shift should be 255 (300 clamped to 255).

� Scaling �lter (image_apply_resize): perform nearest neighbor resize on the image. [4 Points]

* Create a new pixel array of the appropriate size (e.g., old_width * scaling_factor).

* For each pixel in the new pixel array, set its value to (roughly) the nearest neighbor in the
original. For example, if you have an image that is 100x100 and being resized to 50x50, then
the pixel at 25x25 in the smaller resized image would be the same as the one at 50x50 in the
original. (Informally, the pixelhalf way through a smaller image would be the same as the
image halfway through the larger image.

� OOP: Follow the provided header �le for Image to structure it as an object. The Image functions
(�ve below and three �lters above) should be implemented in a �le called Image.c. [4 Points]

* See image_create, image_destroy, image_get_pixels, image_get_width, image_get_height.

2.1 Sample Outputs

� ImageProcessor ttt.bmp -r 56

Output �le name was ttt_copy.bmp.

� ImageProcessor ttt.bmp -r 56 -b 78 -g 45 -o �ltered1.bmp

2https://www.dynamsoft.com/blog/insights/image-processing/image-processing-101-color-space-conversion/

2

� ImageProcessor ttt.bmp -w -r 56 -b 78 -g 45 -o �ltered2.bmp

� ImageProcessor ttt.bmp -w -o �ltered3.bmp

� ImageProcessor ttt.bmp -s 2.0 -o �ltered4.bmp

� ImageProcessor ttt.bmp -s 2.0 -w -o �ltered5.bmp

3

� ImageProcessor ttt.bmp -w -s .5 -r 56 -o �ltered6.bmp

3 Loading Binary Files

3.1 The BMP File Format

For reference, use the BMP speci�cation on Wikipedia: https://en.wikipedia.org/wiki/BMP_�le_format.
In Figure 1, a graphical overview of a BMP �le's layout is shown. The layout is literally the meaning of
the bits/bytes in the �le starting at 0 and going to the end of the �le. The �rst (green) region shows the
BMP header information in 14 bytes: 2 for the signature, 4 for the �le size, 2 for reserved1, 2 for reserved2,
and 4 for �le o�set. Details on each of these (such as their data format, and contents) can be found on the
Wikipedia page. For example, the area labeled �Signature� should contain the characters BM to con�rm that
the �le is in BMP format. The second (blue region) shows the DIP header information in 40 bytes: 4 for
header size, 4 for width, 4 for height, and so on. The last region (yellow) forms a 2D array of pixels. It
stores columns from left to right, but rows are inverted to be bottom to top. Note that each row of pixels
in this section is padded to be a multiple of four bytes. For example, if a line contains two pixels (24-bits or
3-bytes each), then an additional 2-bytes of blank data will be appended.

Review the following struct called BMP_Header which holds the bmp header information. (You should
also consider creating structs to hold the dib header and pixel data.) Notice that the entries in BMP_Header
correspond to the pieces of data listed in the �le format. In general, a chunk of 8-bits should be represented
as a char, a chunk of 16-bits as a short, and 32-bits as an int. (Optionally: consider using unsigned types.)

s t r u c t BMP_Header {
char s i gna tu r e [2] ; //ID f i e l d
i n t s i z e ; // S i z e o f the BMP f i l e
shor t r e s e rved1 ; // Appl i ca t ion s p e c i f i c
shor t r e s e rved2 ; // Appl i ca t ion s p e c i f i c
i n t o f f s e t_p ixe l_ar ray ; // O f f s e t where the p i x e l array can be found

} ;

Plan to review �Example 1� on the Wikipedia page to get a feel for the contents of each of these regions.
A recreated version of that image is provided as the attached �test2.bmp� �le. A good exercise would be to
view the �le in a hex editor like Bless.

4

https://en.wikipedia.org/wiki/BMP_file_format

Figure 1: BMP �le format structure for 24-bit �les without compression. Image modi�ed from
https://en.wikipedia.org/wiki/File:BMP�leFormat.png.

3.2 Loading the BMP header

This is example of code to load the BMP �le header (the �rst 14 bits). Figure 2 shows the output.

Figure 2: Output of base �le on test2.bmp.

// sample code to read f i r s t 14 bytes o f BMP f i l e format
FILE* f i l e = fopen (" t e s t 2 .bmp" , " rb ") ;
s t r u c t BMP_Header header ;

// read bitmap f i l e header (14 bytes)
f r ead (&header . s i gnature , s i z e o f (char)*2 , 1 , f i l e) ;
f r ead (&header . s i z e , s i z e o f (i n t) , 1 , f i l e) ;
f r ead (&header . reserved1 , s i z e o f (shor t) , 1 , f i l e) ;

5

f r ead (&header . reserved2 , s i z e o f (shor t) , 1 , f i l e) ;
f r ead (&header . o f f s e t_pixe l_array , s i z e o f (i n t) , 1 , f i l e) ;

p r i n t f (" s i gna tu r e : %c%c\n" , header . s i gna tu r e [0] , header . s i gna tu r e [1]) ;
p r i n t f (" s i z e : %d\n" , header . s i z e) ;
p r i n t f (" r e s e rved1 : %d\n" , header . r e s e rved1) ;
p r i n t f (" r e s e rved2 : %d\n" , header . r e s e rved2) ;
p r i n t f (" o f f s e t_p ixe l_ar ray : %d\n" , header . o f f s e t_p ixe l_ar ray) ;

f c l o s e (f i l e) ;

The key functions here are:

� FILE * fopen (const char * f i l ename , const char *mode)

This creates a new �le stream. fopen is used with the �rb� mode to indicate we are �r�eading a �le in
�b�inary mode. To read a �le, use the mode �wb� instead of �rb�.

� s i ze_t f r ead (void *ptr , s i ze_t s i z e , s i z e_t nitems , FILE * stream)

For each call to fread, we give it �rst a pointer to an element of a struct containing the BMP header,
then the number of bytes to read, the number of times to read (typically 1), and the �le stream to
use. Note that the order of the calls to fread de�nes the order in which we read data so the order
must match the �le layout. (There is also a function called fwrite which works in exactly the opposite
manner. The �rst parameter won't be a pointer though.)

One function not used here but which may be useful is fseek:

� i n t f s e e k (FILE * stream , long i n t o f f s e t , i n t o r i g i n)

The purpose of fseek is to move the �reading head� of the FILE object by some number of bytes. It can
used to skip a number of bytes. The �rst parameter to fseek is the �le pointer, followed by a number
of bytes to move, and an origin. For origin, SEEK_CUR is a relative repositioning while SEEK_SET
is global repositioning.

The basic idea to support loading a BMP �le will be to parse it by byte-byte (using fread) into a set of
structs. Later, you can use fwrite to write out the contents of those structs to a �le stream to save the
�ltered image.

3.3 Making BMP �le headers

When creating a new BMP, especially one that has been resized, you will need to �ll in the header of the
new �le yourself. For example, you will need to �ll in the compression type, the number of color planes, etc
for BMP �les. The following de�nes default values you should use when creating an image. All values that
are not de�ned here, you should calculate based on the input image.

� BMP Header:

� Signature: �BM�

� Reserved 1: 0

� Reserved 2: 0

� DIB Header:

� Planes: 1

� Compression: 0

� Horizontal resolution: 3780

� Vertical resolution: 3780

� Color number: 0

� Important color number: 0

6

4 Include Files

To complete this assignment, you may �nd the following include �les and functions useful:

� stdio.h: De�nes standard IO functions.

� stdlib.h: De�nes memory allocation functions.

� string.h: De�nes string manipulation functions.

� char* strcat(char* dest, const char* src): The strcat() function appends the string pointed to by
src to the end of the string pointed to by dest.

� char* strcpy(char* dest, const char* src): The strcpy() function copies the string pointed to, by
src to dest.

� size_t strlen(const char* str): The strlen() function computes the length of the string str up to,
but not including the terminating null character.

� char* strtok_r(char* str, const char* delim, char** saveptr): The strtok_r function parses a
string into a sequence of tokens.

� unistd.h: De�nes POSIX operating system API functions.

� int getopt(int argc, char *const argv[], const char *optstring): The getopt() function is a builtin
function in C and is used to parse command line arguments.

Your solution may not include all of these include �les or functions, they are only suggestions. If you want
to include any other �les, please check with the instructor or TA before doing so.

5 Submission

The submission for this assignment has one part: a source code submission. The �les should be zipped in
a �le named "LastNameImageProcessor.zip" (e.g. "EdgarImageProcessor.zip") attached to the homework
submission link on Canvas.

Writeup: For this assignment, no write up is required.
Source Code: Please name your main �le as "LastNameImageProcessor.c" (e.g. "EdgarImageProces-

sor.c"). Your ZIP should also include: BMPHandler.c, BMPHandler.h, Image.c, and Image.h.

7

	Background
	Requirements [36 points]
	Sample Outputs

	Loading Binary Files
	The BMP File Format
	Loading the BMP header
	Making BMP file headers

	Include Files
	Submission

