

Assignment 6: White-Box Testing

(INDIVIDUAL ASSIGNMENT)

Goals:

● Get familiar with white-box testing.
● Understand some subtleties of structural coverage.

Preliminary Steps:

● Download the archive assignment6.tar.gz.
● Extract the archive in the root directory of the personal repo we assigned

to you.
○ This will create a directory called Assignment6 in the root directory

of the repo. Hereafter, we will call this directory <dir>.

○ This will also create the following files:
■ A skeleton of the class that you need to complete for this

assignment:
<dir>/src/edu/gatech/seclass/GlitchyClass.java

■ An example of the kind of JUnit test classes you need to create for
this assignment:
<dir>/test/edu/gatech/seclass/ExampleTestSC1.java

■ A JUnit library to be used for the assignment:
<dir>/lib/junit-platform-console-standalone-1.9.1.jar

Instructions:

To complete the assignment, perform the following tasks (after reading the
instructions in their entirety):

● Task 1: Create in class GlitchyClass a method called glitchyMethod1
that contains a division by zero fault and at least two branches, such that
(1) it is possible to create a non-empty test suite that achieves less than
100% statement coverage and reveals the fault, and (2) it is possible to

create a test suite that achieves 100% statement coverage and does not
reveal the fault.

 ○ The method can have any signature.
○ See note 6 below for prohibited language constructs.
○ If you think it is not possible to create a method meeting both

requirements, then:
■ Create an empty method.
■ Add a comment in the (empty) body of the method that concisely

but convincingly explains why creating such a method is not
possible.

https://drive.google.com/file/d/13FPZuSelccbxHR6nrXzEFJ8Gf2sgywKC/view?usp=drive_link
https://docs.oracle.com/javase/7/docs/api/java/lang/ArithmeticException.html

○ Conversely, if you were able to create the method, create two JUnit
test classes as follows:
■ GlitchyClassTestSC1a should achieve less than 100% statement

coverage of glitchyMethod1 and reveal the fault therein.
■ GlitchyClassTestSC1b should achieve 100% statement coverage of

glitchyMethod1 and not reveal the fault therein.

■ Both classes should be saved in the directory <dir>/test. (The full
actual path should obviously also reflect the package structure, and
the same holds for the test classes in the subsequent tasks.)

● Task 2: Create in class GlitchyClass a method called glitchyMethod2

that contains a division by zero fault and at least two branches, such that
(1) it is possible to create a test suite that achieves 100% path coverage
and reveals the fault, (2) every possible test suite that achieves 100%
branch coverage does not reveal the fault.
○ The method can have any signature.
○ See note 6 below for prohibited language constructs.
○ If you think it is not possible to create a method meeting both

requirements, then:
■ Create an empty method.
■ Add a comment in the (empty) body of the method that concisely

but convincingly explains why creating such a method is not
possible.

○ Conversely, if you were able to create the method, create two JUnit
test classes as follows:
■ GlitchyClassTestPC2 should achieve 100% path coverage of

glitchyMethod2 and reveal the fault therein.

■ GlitchyClassTestBC2 should achieve 100% branch coverage of
glitchyMethod2 and not reveal the fault therein.

■ Both classes should be saved in the directory <dir>/test.

● Task 3: Create in class GlitchyClass a method called glitchyMethod3
that contains a division by zero fault and at least two branches, such that
(1) every possible test suite that reveals the fault achieves 100%
statement coverage, and (2) it is possible to create a test suite that
achieves 100% branch coverage and does not reveal the fault.
○ The method can have any signature.
○ See note 6 below for prohibited language constructs.
○ If you think it is not possible to create a method meeting both

requirements, then:
■ Create an empty method.
■ Add a comment in the (empty) body of the method that concisely

but convincingly explains why creating such a method is not
possible.

https://docs.oracle.com/javase/7/docs/api/java/lang/ArithmeticException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ArithmeticException.html

○ Conversely, if you were able to create the method, create two JUnit
test classes as follows:
■ GlitchyClassTestSC3 should achieve 100% statement coverage of

glitchyMethod3 and reveal the fault therein.
■ GlitchyClassTestBC3 should achieve 100% branch coverage of

glitchyMethod3 and not reveal the fault therein.
■ Both classes should be saved in the directory <dir>/test.

● Task 4: Class GlitchyClass contains the following method

glitchyMethod4:

public static int glitchyMethod4(int a, int b, int c, int d, boolean e) {

 int result = 0;

 if (a == 0) {

 if ((b == c) || ((d < 0) && (e))) {

 result = 1;

 } else {

 result = 2;

 }

 } else {

 result = 3;

 }

 return result;

}

Create two JUnit test classes as follows, where each test case performs a
single invocation of glitchyMethod4.

■ GlitchyClassTestSC4 should achieve 100% statement coverage of
glitchyMethod4 and contain at most 3 test cases.

■ GlitchyClassTestMCDC4 should achieve 100% Modified

Condition/Decision Coverage (MC/DC) of glitchyMethod4 and
contain at most 8 test cases.

■ Partial credit will NOT be awarded if GlitchyClassTestSC4 and
GlitchyClassTestMCDC4 do not satisfy their respective

requirements.
■ Bonus Points: If GlitchyClassTestMCDC4 achieves 100% MC/DC

coverage with the minimum possible number of test cases, then you
will receive 10 bonus points. Determining the actual minimum is
part of the bonus task (but you may safely assume the minimum is
less than or equal to 8).

■ Both classes should be saved in the directory <dir>/test.

● Task 5: Method glitchyMethod5 in the provided class GlitchyClass
contains:
○ The code below, commented out:

public boolean glitchyMethod5 (boolean a, boolean b) {
 int x = 1;
 int y = 0;
 if(a) {
 x -= y;
 } else {
 y -= x;
 }
 if(b) {
 x += y ;
 }
 if(y>=0) {
 x += 1;
 }
 x = 6 / (x + y);

 return (x > 0);
}

○ The following table, where you can provide your responses as strings
(please note that the table in the code has a slightly different format
because we want to be able to run that part of the code):
// ================
//
// Replace the "?" in column “output” with “T”, “F”, or “E”:
//
// | a | b |output|
// ================
// | T | T | ? |
// | T | F | ? |
// | F | T | ? |
// | F | F | ? |
// ================

○ The following sentences, where you can again provide your responses as

strings (also in this case, the format in the code is different to make the
code executable):
//
// Replace the "?" in the following sentences with “NEVER”,
// “SOMETIMES” or “ALWAYS”:
//
// - Test suites with 100% path coverage “?”
// reveal the fault in this method.
// - Test suites with 100% branch coverage “?”
// reveal the fault in this method.

// - Test suites with 100% statement coverage “?”
// reveal the fault in this method.
// ================

Fill in your answers in the method, as follows:
○ For every possible input, replace the "?" in column “output” of the

table, with "T" to indicate that the return value is true, or "F" to
indicate that the return value is false, or "E" to indicate that the
method exits with a division by zero error.

○ In the sentences following the table, replace the “?” with “NEVER”,
“SOMETIMES”, or “ALWAYS” to indicate whether a test suite with 100%
coverage for the specified criterion NEVER reveals the fault, SOMETIMES
reveals the fault, or ALWAYS reveals the fault in the glitchyMethod5
method.

Notes (important–make sure to read carefully):

1. When we say “create in class GlitchyClass a method called
glitchyMethodN”, we mean that you should complete the placeholder for
that method provided in the skeleton class, by either modifying its code
(and possibly signature) or providing a suitable comment and an empty
body.

2. Explanations of why a method cannot be created, if any, must be written
using the format provided in the method examples in the GlitchyClass
skeleton class.

3. Committing (or omitting) class ExampleTestSC1 has no effect on your
grade.

4. Similarly, leaving or removing the example methods provided in the
GlitchyClass skeleton has no effect on your grade.

5. By “reveal the fault therein”, we mean that the tests that trigger the
division by zero fault should FAIL with an uncaught ArithmeticException
fault, so that they are easy to spot. Make sure that the correct tests fail,
and show the correct type of exception when they fail. See
ExampleTestSC1 for an example.

6. Every one of these methods, if the task is possible, can be written with
simple, short code. In particular, you cannot use any of the following
constructs in your solution:1
a. Compound Predicates. That is, only use simple predicates in the form

(<operand1> <operator> <operand2>), such as “if (x > 5)” or “if (a >
b)”. In other words, you cannot use logical operators (such as &&,
||) in your predicates.

b. Nested if statements (including “else if” constructions).
c. Loops. (while, for, do, etc.)
d. Method calls. Your method should be self-contained and not call any

other methods (including itself).

1 Using any of these constructs would result in a zero for that task.

https://docs.oracle.com/javase/7/docs/api/java/lang/ArithmeticException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ArithmeticException.html

e. Conditional (trinary) operators. (No use of the “<condition> ? <case if
true> : <case if false>” construct.)

f. Switch statements.
g. Streams, lambdas, or other newer complex features of the language.
h. Dead or unreachable code.

7. Read the requirements carefully. For example, “Every possible test
suite...” means all conceivable test suites for your method, not only the
example test suite you write.

8. Your code should compile and run out of the box with Java 11.
9. Use the provided JUnit library for your JUnit tests.
10. We strongly recommend computing coverage manually, as tools

sometimes use slightly different definitions of coverage and may have
some quirks. Given that the solutions typically consist of very simple
methods, it should be easy to compute coverage by hand (which is how we
do it when we grade the assignment).

11. This is an individual assignment. You are not supposed to collaborate

with your team members (or any other person) to solve it. We will enforce
this by running a plagiarism detection tool on all assignments. Given the
numerous different ways in which the assignment can be solved, similar
solutions will be (1) easily spotted and (2) hard to justify.

12. Similarly, make sure not to post on Ed Discussion any solution, whether
complete or partial, and also to avoid questions that are too specific and
may reveal information about a specific solution, or imply which tasks you
believe are possible. You can obviously ask these types of questions
privately to the instructors.

Submission:

● As usual, commit and push your code to your individual, assigned private
repository.

● Make sure that all Java files are committed and pushed (i.e., class
GlitchyClass and any created JUnit test classes).Also make sure to
commit and push the provided libraries (lib directory). To do so, you may
need to force add the jar files (i.e., “git add -f lib/*”), which are

typically excluded by the “.gitignore” file.
● You can check that you committed and pushed all the files you needed by

doing the following:
○ Clone a fresh copy of your personal repo in another directory
○ Go to directory Assignment6 in this fresh clone of your repo
○ Compile your code. One way to do is to run, from a Unix-like shell:

javac -cp lib/* -d classes src/edu/gatech/seclass/GlitchyClass.java
test/edu/gatech/seclass/*.java

○ Run one or more of your tests. Again, from a Unix-like shell, you can
run:
java -cp classes:lib/* org.junit.platform.console.ConsoleLauncher --

select-class edu.gatech.seclass.<test class name>2
(at least some of the tests should fail with an ArithmeticException)

● Submit on Gradescope a file called submission.txt that contains, in two
separate lines, (1) your GT username and (2) the commit ID for your
submission. For example, the content of file submission.txt for George P. Burdell

could look something like the following:
submission.txt
gpburdell1
81b2f59

As soon as you submit, Gradescope will check your assignment by making

sure that your files are present and in the correct location, compiling the code,

running your tests, and performing some sanity checks on the outcome of such

tests. If you pass all these checks, you will see a placeholder grade of 10 and a

positive message from Gradescope. Otherwise, you will see a grade of 0 and an

error message with some diagnostic information. Please note that a positive

response from Gradescope only indicates that you passed the sanity checks

and is meant to prevent a number of trivial errors. Please also note that if your

submission does not pass the Gradescope checks, it will not be graded and

will receive a 0, so please make sure to pay attention to the feedback you receive

when you submit and keep in mind that you can resubmit as many times as you

want before the deadline.3

2 If using a Windows-based system, you may need to run java -cp "classes;lib/*"

org.junit.platform.console.ConsoleLauncher --select-class edu.gatech.seclass.<test class name> instead.
3 Although we tested the checker, it is possible that it might not handle correctly some corner cases. If

you receive feedback that seems to be incorrect, please contact us on Ed Discussion.

