
Project Deliverable 3:

Personal Software Process &

Quality
PSP1, Javadoc, Exception Handling—50 points
This assignment must be done by each student individually. No collaboration is allowed.

Submission Instructions:

Submit a zipped folder named: {YourASURiteUserID}-ProjectDeliverable3.zip
(e.g., skbansa2-ProjectDeliverable3.zip)

This compressed folder should contain the following:

1. A folder called core containing:

a. CheckersLogic.java (Game Logic Module)

b. CheckersComputerPlayer.java (logic to play against computer; generate

computer moves)

2. A folder called ui containing CheckersTextConsole.java (Console-based UI to test

the game)

3. A folder called docs with Javadoc documentation files (index.html and all other

supporting files such as .css and .js files generated by the tool). Submit the

entire folder.

4. ProjectDeliverable3.docx (or pdf) with Completed Time Log, Estimation

worksheet, Design form, Defect Log, and Project Summary provided at the end

of this assignment description.

a. Make sure to provide responses to the reflection questions listed in

ProjectDeliverable3 file (this document).

5. A few screen shots showing test results of your working game.

6. A readme file (optional; submit if you have any special instructions for testing).

Grading Rubric:

Working game—20 points

Javadoc Documentation—5 points

Exception Handling—5 points

Test Results and Postmortem reflection question responses—5 points

PSP process—15 points (3 points each for Time log, Defect log, Estimating Worksheet,

Design form, Project Summary)

Checkers Game:

Checkers is a strategy board game for two players which involve

diagonal moves of uniform game pieces and mandatory captures

by jumping over opponent pieces. It is played by two opponents,

on opposite sides of the 8x8 checkered gameboard. One player

has the dark pieces (or ‘x’ tokens); the other has the light pieces

(or ‘o’ tokens). Each player has 12 pieces. Players alternate

turns. A player may not move an opponent's piece. A move

consists of moving a piece diagonally to an adjacent unoccupied

square. If the adjacent square contains an opponent's piece, and

the square immediately beyond it is vacant, the piece may be captured (and removed

from the game) by jumping over it.

Only the dark squares of the checkered board are used. A piece may move only

diagonally into an unoccupied square. The player without pieces remaining, or who

cannot move due to being blocked, loses the game. Pieces move one step diagonally

forwards, and capture an opponent's piece by moving two consecutive steps in the

same line, jumping over the piece on the first step. Multiple enemy pieces can be

captured in a single turn provided this is done by successive jumps made by a single

piece; the jumps do not need to be in the same line and may "zigzag" (change diagonal

direction). Pieces can move/jump only in forward direction.

Aim of the game: is to capture all the opponent’s pieces or render them unable to

move.

How the game ends:

- The first player to lose all of his or her pieces loses the game.

- If a player is put in a position where they cannot move, they lose.

Reference: https://simple.wikipedia.org/wiki/Checkers

Program Requirements:

To the previously developed Java-based game, add a module to “play against the

computer”. Create a separate class called CheckersComputerPlayer.java in the core

package that generates the moves for the computer player. The logic to automatically

generate computer moves does NOT have to be a sophisticated AI algorithm. A naïve

algorithm to generate the moves is sufficient for this assignment.

• Continue to make use of good Object-Oriented design

CHECKERS BOARD WHEN

GAME STARTS (PUBLIC

DOMAIN)

https://simple.wikipedia.org/wiki/Checkers

• Provide documentation using Javadoc and appropriate comments in your code.

• Generate HTML documentation using Javadoc tool

• Make sure you provide appropriate Exception Handling throughout the program

(in the previously created classes as well)

Sample Output

Create a simple console-based UI as shown in the figures below.

8 | _ | o | _ | o | _ | o | _ | o |

7 | o | _ | o | _ | o | _ | o | _ |

6 | _ | o | _ | o | _ | o | _ | o |

5 | _ | _ | _ | _ | _ | _ | _ | _ |

4 | _ | _ | _ | _ | _ | _ | _ | _ |

3 | x | _ | x | _ | x | _ | x | _ |

2 | _ | x | _ | x | _ | x | _ | x |

1 | x | _ | x | _ | x | _ | x | _ |

 a b c d e f g h

Begin Game. Enter ‘P’ if you want to play against another player; enter ‘C’ to
play against computer.

C

8 | _ | o | _ | o | _ | o | _ | o |

7 | o | _ | o | _ | o | _ | o | _ |

6 | _ | o | _ | o | _ | o | _ | o |

5 | _ | _ | _ | _ | _ | _ | _ | _ |

4 | _ | _ | _ | _ | _ | _ | _ | _ |

3 | x | _ | x | _ | x | _ | x | _ |

2 | _ | x | _ | x | _ | x | _ | x |

1 | x | _ | x | _ | x | _ | x | _ |

 a b c d e f g h

Start game against computer.

You are Player X. It is your turn.

Choose a cell position of piece to be moved and the new position. e.g., 3a-4b

3g-4h

and so on…

Personal Process:

Follow a good personal process for implementing this game. You will be using PSP1 in

this assignment. So, in addition to tracking your effort and defects you will have to

estimate the effort

• for the “play against computer” module as well as

• adding exception handling to the previously created classes.

PSP Forms

• Please use the estimating worksheet contained herein to estimate how much

time, and how big your program might be.

• Please include in the design form any materials you create during your design

process. It’s at the end of this document.

• Please use the time log (provided at the end of this document) to keep track of

time spent in each phase of development.

• Please use the defect log (provided at the end of this document) to keep track of

defects found and fixed in each phase of development.

• When you are done implementing and testing your program, complete the

project summary form to summarize your effort and defects. Also answer the

reflection questions.

Phases

Follow these steps in developing the game:

Plan—understand the program specification and get any clarifications needed.

1. Estimate the time you are expecting to spend on the new module(s) to be

added.

2. Estimate the size of the program (only for new code that you will be adding).

3. Enter this information in the estimation columns of the Project Summary form.

Use your best guess based on your previous programming experience. There is

no penalty for having an estimate that is not close to the actual. It takes practice

to get better at estimation.

4. Use the provided estimating worksheet.

Design—create a design (for the new modules being added) in the form of flow charts,

breakdowns of classes and methods, class diagrams or pseudocode. Provide this

design in the PSP design form provided at the end of this document. Keep track of

time spent in this phase and log. Also keep track of any defects found and log them.

Code—implement the program. Keep track of time spent in this phase and log. Also

keep track of any defects found and log them.

Test—test your program thoroughly and fix any bugs found. Keep track of time spent in

this phase and log. Also keep track of any defects found and log them.

Postmortem—complete the actual and to date columns of the project summary form

and answer the reflection questions.

Estimating Worksheet

PSP1 Informal Size Estimating Procedure

1. Study the requirements.

2. Sketch out a crude design.

3. Decompose the design into “estimatable” chunks.

4. Make a size estimate for each chunk, using a combination of:

a. visualization.

b. recollection of similar chunks that you’ve previously written

c. intuition.

5. Add the sizes of the individual chunks to get a total.

Conceptual Design (sketch your high-level design here)

Module Estimates
Module Description

Estimated Size

Total Estimated Size:

PSP Time Recording Log
Date Start Stop Interruption

Time
Delta
Time

Phase Comments

• Interruption time: Record any interruption time that was not spent on the task. Write the reason

for the interruption in the "Comment" column. If you have several interruptions, record them with

plus signs (to remind you to total them).

• Delta Time: Enter the clock time you spent on the task, less the interrupt time.

• Phase: Enter the name or other designation of the programming phase being worked on.

Example: Design or Code.

• Comments: Enter any other pertinent comments that might later remind you of any details or

specifics regarding this activity.

PSP Defect Recording Log
Serial
No.

Date Defect
Type
No.

Defect
Inject
Phase

Defect
Removal
Phase

Fix
Time
(duration)

Fix
Ref

Description

Instructions
• Serial No.: The unique id you associate with the defect; allows you to reference it later.

• Defect Type No.: The type number of the type—see the PSP Defect Type Standard table below

and use your best judgement.

• Defect Inject Phase: Enter the phase (plan, design, code, etc.) when this defect was injected

using your best judgment.

• Defect Removal Phase: Enter the phase during which you fixed the defect.

• Fix Time: Enter the amount of time that you took to find and fix the defect.

• Fix Ref: If you or someone else injected this defect while fixing another defect, record the number

of the improperly fixed defect. If you cannot identify the defect number, enter an X. If it is not

related to any other defect, enter N/A.

• Description: Write a succinct description of the defect that is clear enough to later remind you

about the error and help you to remember why you made it.

PSP Defect Type Standard
Type Number Type Name Description

10 Documentation Comments, messages

20 Syntax Spelling, punctuation, typos, instruction formats

30 Build, Package Change management, library, version control

40 Assignment Declaration, duplicate names, scope, limits

50 Interface Procedure calls and references, I/O, user formats

60 Checking Error messages, inadequate checks

70 Data Structure, content

80 Function Logic, loops, recursion, computation, function defects

90 System Configuration, timing, memory

100 Environment Design, compile, test, or other support system problems

PSP1 Project Summary

Time in Phase
Phase Estimated time

(in minutes)
Actual time (in
minutes)

To Date time % of total time
to Date

Planning 50 (50/785)*100

Design 100 (100/785)*100

Code 500

Test 90

Postmortem 45

TOTAL 785 100

Defects Injected
Phase Estimated

Defects
Actual Defects To Date defects % of total to

Date

Planning ——————— Week2 + Week3

Design ———————

Code ———————

Test ———————

Postmortem ———————

TOTAL ———————

Final Summary
Metric Estimated Actual To Date

Program Size (Lines of Code—LOC) 1

Productivity (calculated by
LOC/Hour)

Defect Rate (calculated by
Defects/KLOC) 2

———————

Reflection Questions

1. How good was your time estimate for various phases of software development?

2. How good was your program size estimate, i.e., was it close to actual?

3. In which phase did you introduce most number of defects?

1 LOC stands for lines of code.
2 KLOC stands for kilo lines of code (1000 lines)

PSP Design Form
Use this form to record whatever you do during the design phase of development.

Include notes, class diagrams, flowcharts, formal design notation, or anything else you

consider to be part of designing a solution that happens BEFORE you write program

source code. Attach additional pages if necessary.

	Project Deliverable 3: Personal Software Process & Quality
	PSP1, Javadoc, Exception Handling—50 points
	Submission Instructions:
	Grading Rubric:
	Checkers Game:
	Program Requirements:
	Sample Output

	Personal Process:
	PSP Forms
	Phases

	Estimating Worksheet
	PSP1 Informal Size Estimating Procedure
	Conceptual Design (sketch your high-level design here)
	Module Estimates

	PSP Time Recording Log
	PSP Defect Recording Log
	Instructions
	PSP Defect Type Standard

	PSP1 Project Summary
	Time in Phase
	Defects Injected
	Final Summary
	Reflection Questions

	PSP Design Form

