
CSCI203/CSCI803 ASSIGNMENT 1
(10 marks + 2 demo marks)

Step-1 demo due during your Week-4 Lab class

Final submit due Week-6, Fri 11:59pm 6 Sept.

You are to write a word processing program in one file (only) named: ass1.cpp or ass1.java, etc.

Your main() procedure should record the start time of your program and, at the end of processing,

display the total run time of your program (in seconds). You should do this work in steps, as

described below. You may use any data structures and algorithms that have been presented in class

up to the end of week 4. If you use other data structures or algorithms, appropriate references must

be provided. Note: You will only receive the 2 marks for step-1 if you complete and demo

Step-1 in your lab class in week-4.

Step-1 (Week-4 demo, 2 marks)
Write a program that reads the dictionary file (named: "dictionary.txt) and places the words in an

appropriate array and then prints the number of words read on the screen. (You can assume that the

dictionary contains no more than 400,000 words and no word is longer than 35 characters.) Then

write a function that uses a linear search to find the first 5 emordnilap words in the dictionary array

and displays them on the screen. Note: An emordnilap word is a word larger than 1 character that

when spelled backward exists in the dictionary, e.g.: "peels – sleep" or "racecar - racecar". (Yes

palindromes are emordnilap words too. In fact "emordnilap" is "palindrome" spelled backwards.)

Example output:

Number of words in dictionary: 370103

First 5 emordnilap words:

aa : aa

aaa : aaa

aas : saa

ab : ba

aba : aba

Total run time (secs): 1

Note: Make sure your search stops when the first 5 emordnilap words are found. Step-1 is not

about speed. We will speed it up in step-2. . .

Step-2 (More Emordnilap words, 2 marks)
Before you commence Step-2, estimate how long it would take for your step-1 linear search to find

all the emordnilap words in the dictionary? Now, replace the linear search with a binary search and

determine the time to find ALL the emordnilap words in the dictionary. Write your estimate of the

speedup factor in the report in Step-5. Print on the screen: the first 10 emordnilap words found

(similar to step-1) and the longest emordnilap word found. (Note: if there is more than one

emordnilap word with the longest length, print the first one only.) Implement other speed

enhancements if you can think of any.

Step-3 (Spell-check, 3 marks)
Read the input data file: "sample.txt", pre-process it (as explained below) and search for each word

(once only) in the dictionary. Then print on the screen the total number of valid words read, the

number of unique words read, and the number of unique words read that were found in the

dictionary. You should store all unique words that were found in the dictionary in a suitable array.

Note: To pre-process the words read from "sample.txt", all capitals should be converted to lower

case. Punctuation marks in words should be removed and treated as a single word. Thus, it’s will

become its, you’ll will become youll and loop-hole will become loophole. Any word that becomes

zero characters as a result of the pre-processing should be rejected it as an invalid word.

Step-4 (Anagrams, 3 marks)
Use the dictionary to find anagrams of the unique words stored in the array from step-3. Print the

first 10 anagram words together with their anagrams in alphabetic order e.g.:
 admire: armied damier dimera merida

 after: afret frate trefa

Also, print the word with the most anagrams, the longest word with anagram(s), the total number of

words with anagram(s) and the total number of anagrams found. Optimise your code so that it

completes this task as quickly as possible.

Step-5 (Specifications, 2 marks)
In a comment block at the bottom of your program, write the following details in no more than 20

lines of text. State the run time of your final program and what machine this was on. Quote the

speedup achieved in step-2. List the data structures and algorithms used by your program to spell-

check, find emordnilap words and find anagrams. Also include any other enhancements you did to

speed up your program (if any). For this step, marks will be awarded based on how accurately and

clearly you describe your program.

Marking Guide:
Programs must compile and run on banshee under gcc (C programs), g++ (C++ programs), javac

(Java programs) or python (python programs). Programs which do not compile and run on banshee

will receive no marks. Marks may be deducted for untidy or poorly designed code. Appropriate

comments should be provided where needed. All coding and comments must be your own work.

Inbuilt standard libraries or data structures and algorithms, such as STL should not be used. You

may use string or String type for storing the words, if you wish.

Submission:

Assignments should be typed into a single text file named "ass1.ext" where "ext" is the

appropriate file extension for the chosen language. You should run your program and copy and

paste the output into a text file named: "output.txt"

Submit your files via the submit program on banshee:

 submit -u user -c csci203 -a 1 ass1.ext output.txt

 - where user is your unix userid and ext is the extn of your code file.

Late assignment submissions without granted extension will be marked but the points awarded will

be reduced by 1 mark for each day late. Assignments will not be accepted if more than five days

late. An extension of time for the assignment submission may be granted in certain circumstances.

Any request for an extension of the submission deadline must be made via SOLS before the

submission deadline. Supporting documentation should accompany the request for any extension.

