Arizona State University SER334: Operating Systems & Networks
TA Khan, Lecturer Acuia Revised 3/30/2019

Implementing Load Balancing

Summary: In this homework, you will be implementing the main multi-threaded logic for doing batch-
based server load balancing using mutexes.

1 Background

In this assignment you will write a batch-based load balancer. Consider a server which handles data pro-
cessing based on user requests. In general, a server has only a fixed set of hardware resources that it can use
to satisfy user requests. This is problematic since servers can be become overloaded. One common scaling
feature that is implemented is load batching (a form of load balancing). On modern platforms, it is possible
to spin up a virtual instance server using a cloud environment (e.g., AWS, Microsoft Azure, Google Cloud)
to handle specific needs. The idea of cloud computing has gained traction as a way to deal with scalability
and maintance issues. Examples include internet-based storage, computing, or services, which are accessed
by client-based devices or by web browsers. As more requests are made, more servers instance are spawned.
This gives the ability to seamlessly scale up to peaks in user requests. Although this provides a good way
to scale resources, the cost of spinning up a new server is non-trivial. Thus, gateway servers tend to col-
lect a batch of requests before starting a server instance. Your goal in this assignment is to implement the
multi-threaded load balancer server logic that will mimic the process of creating server instances to process
batches of requests as they come in. Note that while this system is conceptually a network situation, we will
be modeling it as a set of functions spread across three files.

At a high level, the load balancer server waits for a specific number of requests to be made before spawning
an instance server in a cloud-like environment, and initializing the instance with the appropriate work. We
call the number of requests that should be serviced the batch size, and assume that the server instances are
designed so they can handle exactly batch size number of requests at a time. The load balancer starts to
form a batch as soon as it receives as least one request and continues to add requests to the batch until the
batch is full (i.e., the batch size is reached). At that point, the load balancer will spawn a new server instance
using the instance host to begin processing the batch. The load balancer makes sure that server instances
are only initialized when enough requests have been made. Internally, the load balancer will add requests to
a list which is then forwarded to a instance server once it reaches the appropriate size. As the requests are
handled by the individual server instances, each instance will store the result into output location given by
the creator of the request.

This document is separated into five sections: Background, System Architecture, Requirements, Include
Files, and Submission. You have almost finished reading the Background section already. In System Archi-
tecture, we discuss the conceptual view of the system as the interactions between users, a load balancer, and
an instance host. In Requirements, we will discuss what is expected of you in this homework. In Include
Files, we discuss the the various libraries and function calls you may find useful in the assignment. Lastly,
Submission discusses how your source code should be submitted on BlackBoard.

2 System Architecture

Conceptually, the system is divided into three main components: users, the load balancing server, and the
server instance host. Figure 1 shows these components and how they are related.

1. User: A user is a person who utilizes the system to get a job done. Users make a requests to the load
balancer server. A request consists of the id of the user, some data payload, and a place to store the
result of processing. A request is also called a job. On completion of the request from the server, the
result (which will be computed by some instance) will be stored in the location specified in the request.

2. Load Balancer Server: The load balancer server acts as a gateway that is a middle layer between
server instances and the users, it is used to distribute incoming traffic to different servers capable of
fulfilling those requests in a manner that maximizes throughput, and ensures that no one server is
overworked.

3. Server Instance Host: The server instance host is a cloud-like environment which can dynamically
create server instances to deliver resources (e.g., compute time) on demand. Changes to one server
instance do not have any effect on other instances. Unlimited server instances can be run within a host
environment at any given time. Each server instance takes a batch of requests, and processes it.

Spawn

Load | Instances 2K
Balancer Jobs
i

! Server
Instances

Figure 1: Structural overview of the system containing users, a load balancer, and a server host.

Figure 2 shows an overview of the system flow. Behaviorally, the load balancer first receives requests from
users. Once the load balancer has received enough requests, it adds the requests to a batch, instantiates a
new server instance, and sends the batch to it. After a batch has been received, it is processed, and the
results saved where the user specified.

Load

Balancer
Batch
Request

LI
ﬁ LI

Server
Instances

Figure 2: Behavioral overview depicting how system elements communicate.

2.1 System Model

For this scenario, we will not be implementing a full networked solution of different programs runing
across multiple computers, but rather model it as a set of functions spread across different files. The
implementation will be done using three files which provide the functionality needed by each of the sys-
tem components. For example, we will have a file called InstanceHost.c which contains a function called
host request instance(). When the load balancer in our system needs to create an instance, it will simply
called host request instance() from InstanceHost.c. It will not make any sort of network connection. The
goal is simply to use C functions which fit into the overall conceptual framework given by the problem.
The network will be modeled using three files. User.c will receive input for amount of user making
requests, and the batch size. During execution, a thread will be generated to represent each user request.
Each request will be passed to LoadBalancer.c. LoadBalancer.c, after receiving requests from User.c, will

construct a batch (a linked list). The batch will be passed to InstanceHost.c which will remove the requests
from the batch, and process it. Batches will be represented as a linked list of nodes, with nodes containing
the pieces of information (id, data, result address) required by each request. Note that a job will simply
consistent of squaring a number.

3 Requirements [36 points]

For your submission will you create two new files: LoadBalancer.c (which includes LoadBalancer.h, and
InstanceHost.h), and InstanceHost.c (which includes InstanceHost.h). You will not need to make changes
to User.c, LoadBalancer.h, or InstanceHost.h. Your task is to implement the functionality as defined in
LoadBalancer.h and Instance.h in their respective .c files.

The number of requests (N) and batch size (K) will be provided as an input during execution. Each
request will run on an individual thread. Requests will be received by the load balancer which will instantiate
new server instances depending on batch size. The LoadBalancer will create a linked list (up to size K) as
requests are made and which will be protected by a mutex to ensure only one request is added at a time.
After a batch has been filled, the batch is sent to a new server instance. Once in a thread on the host, the
linked list’s requests are processed and the results are given as an output. Throughout the lifetime of the
program, create only one LoadBalancer and one InstanceHost object. Global variables not permitted for
LoadBalancer or InstanceHost.

1. LoadBalancer.c: A file containing a set of functions to simulate a load balancer. [20 points total]

(a) balancer* balancer create(int batch_size): Initializes the load balancer. Takes batch size as pa-
rameter. |2 points]

(b) woid balancer_ destroy(balancer** 1b): Shuts down the load balancer. Ensures any outstanding
batches have completed. [3 points]

o If there are leftover jobs (too few to have spawned an instance host normally), then create an
instance host to handle them. [5 points]

(c) woid balancer add_job(balancer* Ib, int user id, int data, int* data_return): Adds a job to the
load balancer. The linked list of jobs must be protected by a mutex. [6 points]

e If enough jobs have been added to fill a batch, the load balancer will request a new instance
from InstanceHost. [4 points]

2. InstanceHost.c: A file containing a set of functions to simulate a cloud-like server instance host. [16
points total]

(a) wvoid host_ create(): Initializes the host environment. [3 points]

(b) woid host_ destroy(host** h): Shuts down the host environment. Ensures any outstanding batches
have completed. [3 points]

(¢c) wvoid host_request_instance(host* h, struct job_node* batch): Creates a new server instance (i.e.,
thread) to handle processing the items contained in a batch (i.e., a listed list of job_node). Server
instances are modeled as threads which process a list of jobs. [5 points]

e Data must be processed (the data value squared) and returned to user (using the result
pass-by-reference). [5 points]

You may add other helper functions as needed.
Sample Output

User #1: Wants to process data=77 and store it at 0xb2a00470.
LoadBalancer: Received new job from user #1 to process data=77 and store it at 0xb2a00470.
User #4: Wants to process data=49 and store it at 0xb2c00480.
LoadBalancer: Received new job from user #4 to process data=49 and store it at 0xb2c00480.
User #5: Wants to process data=62 and store it at 0x95f89c¢0.
LoadBalancer: Received new job from user #5 to process data=62 and store it at 0x95f89¢0.

User #8: Wants to process data=40 and store it at 0x95f89d0.

LoadBalancer: Received new job from user #8 to process data=40 and store it at 0x95f89d0.
User #3: Wants to process data=93 and store it at 0x95f89b0.

LoadBalancer: Received new job from user #3 to process data=93 and store it at 0x95f89b0.
LoadBalancer: Received batch and spinning up new instance.

User #9: Wants to process data=72 and store it at 0xb2a004a0.

LoadBalancer: Received new job from user #9 to process data=72 and store it at 0xb2a004a0.
User #7: Wants to process data=63 and store it at 0xb2c00490.

LoadBalancer: Received new job from user #7 to process data=63 and store it at 0xb2c¢00490.
User #6: Wants to process data=90 and store it at 0xb2a00490.

LoadBalancer: Received new job from user #6 to process data=90 and store it at 0xb2a00490.
User #0: Wants to process data=83 and store it at 0xb2c00470.

LoadBalancer: Received new job from user #0 to process data=83 and store it at 0xb2c¢00470.
User #2: Wants to process data=86 and store it at 0xb2a00480.

LoadBalancer: Received new job from user #2 to process data=86 and store it at 0xb2a00480.
LoadBalancer: Received batch and spinning up new instance.

User #0: Received result from data=83 as result=6889.

User #3: Received result from data=93 as result =8649.

User #6: Received result from data=90 as result=8100.

User #1: Received result from data=77 as result=5929.

User #8: Received result from data=40 as result=1600.

User #5: Received result from data=62 as result=3844.

User #4: Received result from data=49 as result=2401.

User #7: Received result from data=63 as result=3969.

User #2: Received result from data=86 as result=7396.

User #9: Received result from data=72 as result=5184.

This output was generated with 10 user requests and a batch size of 5. Since the users make requests
after waiting a random amount of time your output will differ. To get this output, you will need to add two
lines to your lines:

//as first line of balancer add job:
printf("LoadBalancer: Received new job from user #%d to process data=%d and
store it at %p.\n", user id, data, data_ return);

//as first line of host_ request instance:
printf("LoadBalancer: Received batch and spinning up new instance.\n");

3.1 Basecode

For this assignment, three base files are provided: User.c, LoadBalancer.h, and InstanceHost.h. These files
together make up the logic of our system.

1. User.c: A program to simulate multiple users simultaneously requesting work (a "job") to be carried
by a load balancing server and returned to the user. A job is to compute the square of a number.

(a) int main(): Entry point to simulation.

(b) wvoid* simulate wuser request(void* user id): simulates a user requesting work to be done a
server.

2. LoadBalancer.h: A file containing definitions for a set of functions to simulate a load balancer.

(a) woid balancer init(int batch_ size): Initializes the load balancer.
(b) woid balancer_shutdown(): Shuts down the load balancer.

(c) void balancer add_job(int user_ id, int data, int* data_ return): Adds a job to the load balancer.

3. InstanceHost.h: A file containing definitions for a set of functions to simulate a cloud-like server
instance host.

(a) woid host_init(): Initializes the host environment.

(b) woid host_shutdown(): Shuts down the host environment.

(c) woid host_request_instance(struct job_node* batch): Creates a new server instance to handle
processing the items contained in a batch.

4 Include Files

To complete this assignment, you may find the following include files useful:
e pthread.h: Defines functionality for manipulating mutexes.

— Useful functions

* int pthread mutex_init(pthread mutex t *mutex, const pthread mutexattr _t *attr): func-
tion initialises the mutex referenced by mutex with attributes specified by attr.

* int pthread mutex lock(pthread mutex t *mutex): The mutex object referenced by mutex
is locked by calling pthread mutex lock(). If the mutex is already locked, the calling thread
blocks until the mutex becomes available.

* int pthread mutex unlock(pthread mutex t *mutex): The pthread mutex unlock() func-
tion releases the mutex object referenced by mutex.

* int pthread mutex destroy(pthread mutex t *mutex): The pthread mutex destroy() func-
tion shall destroy the mutex object referenced by mutex; the mutex object becomes, in effect,
uninitialized.

5 Submission

The submission for this assignment has one part: a source code submission. The file should be attached to
the homework submission link on BlackBoard.

Writeup: For this assignment, no write up is required.

Source Code: Please name your classes as "LastnamelLoadBalancer.c", and “LastnamelnstanceHost.c”
(e.g., "KhanLoadBalancer.c", and “KhanInstanceHost.c”). (If you require additional .c or .h files, please
check with the instructor or TA first.)

