
Departamento de Engenharia Informática

DEI

Algorithms for Discrete Structures

Project 2

Common Substrings of More Than Two Strings

2020/2021

This project considers the problem of determining the longest common
sub-strings of at least d distinct strings. The delivery deadline for the project
code is June 2nd, at 17:00.

Students should not use existing code for the algorithms described in the
project, either from software libraries or other electronic sources.

It is important to read the full description of the project before starting
to design and implement solutions.

Students should deliver a working implementation to the mooshak system.

1 Longest substrings

The challenge is to implement the suffix tree algorithm to compute the size
of the longest substrings that are common to at least d distinct strings. An
algorithm for this problem is explained in section 7.6 of Gusfield’s book [1].

The algorithm runs in two phases. First it builds a generalized suffix
tree, for the set of strings. This is achieved in linear time using Ukkonen’s
algorithm. In the second step the tree is traversed, possibly with a DFS, and
information about the set of distinct strings that contain a certain substring
is computed, by performing unions of sets of string identifiers whenever such
a set contains at least d distinct strings and its string-depth is compared to
the longest known value. In fact a slight improvement can be done in this
step, because we are interested in the complete table of strings sizes for all
the possible values of d.

1

The input will consist of a set of DNA sequences, hence the underlying
alphabet will be A,C,T,G.

In this project we do not require a naive implementation, but students
are advised to implement one for debugging purposes.

1.1 Description

The input will consist of a set S = S1, S2, . . . , Sk, with k strings. The total
size of the strings is m. The most naive solution for this problem compares
every substring of Sj with every suffix of Si until there is a mismatch, or one
of the strings ends. This algorithm would require O(m4) time, although this
is a rough upper bound. Still it is a good algorithm for debugging.

A more efficient version could use the Boyer-Moore pre-processing, or
adapt the Knuth-Morris-Pratt algorithm and obtain O(m2) time. Using suf-
fix trees we can obtain the better bound of O(km).

Hence the first step must be constructing the generalized suffix tree. To
obtain the previous bound this must be done efficiently, in linear time, by
using Ukkonen’s algorithm. This algorithm is fairly challenging to imple-
ment and constitutes a major part of this assignment. Particularly because
generalized suffix trees require some extra issues. In implementing this data
structure students are advised to use the “sentinel” programming technique.
This technique consists in augmenting the data structures to avoid writing
more code. The idea is that to avoid producing code that contains many
conditional selections, if statements mainly, we add extra content in the
data structure. An important example for suffix trees is the suffix link of the
root node. The general definition does not apply to this case, therefore it is
formally undefined. For programming purposes it is best to add a sentinel,
that is the suffix link of the root. It should also be possible to Descend from
this node to the root with any letter.

A fair amount of information must be stored at each node. A recom-
mended structure, in C, is the following:

typedef struct node* node;

struct node

{

int Ti; /**< The value of i in Ti */

int head; /**< The path-label start

at &(Ti[head]) */

int sdep; /**< String-Depth */

node child; /**< Child */

2

node brother; /**< brother */

node slink; /**< Suffix link */

node* hook; /**< What keeps this linked? */

};

Most fields are explained by the comments. This structure can be used
both to represent internal nodes and to represent leaves. For leaves a smaller
structure could be used, thus saving overall space, but such optimization
is not critical and therefore not recommended. The trickiest field in the
previous structure is the hook, which is a pointer to a pointer to a struct.
If you find this confusing you can instead use a doubly linked list for the
brother, i.e., store two pointers instead of one, and a father pointer that
points to the node that is the father of this one. This makes inserting nodes
into the tree simpler to implement.

The hook version requires less code, and space. A node struct is pointed
to by only one child or brother pointer, the idea of the hook is to keep a
pointer to that pointer. With this information it is also simple to update the
structure for removals, and moreover the code does not depend on whether
the reference was from a child pointer or a brother pointer. Still the hook
information must be properly updated, for example if p->b becomes the
child of node x we would use the following code :

x->child = p->b;

p->b->hook = &(x->child);

A simple outline of Ukkonen’s algorithm is the following, slightly different
from section 6.1:

j = 0;

while(j <= ni[i])

{

while(!DescendQ(p, Ti[i][j]))

{

AddLeaf(p, i, j);

SuffixLink(p);

}

Descend(p, Ti[i][j]);

j++;

}

This code is used to insert text Ti[i] into the generalized suffix tree, there-
fore Ti[i][j] represents the character at position j, the size of this text is
stored in ni[i]. For every character Ti[i][j] that need to be inserted we

3

create nodes and follow suffix links until we find a position where it is possi-
ble to descend by the letter Ti[i][j]. The variable p represents a point, i.e.,
a position between two letters of a given branch. The following structure is
a possible implementation of this concept:

typedef struct point* point;

struct point

{

node a; /**< node above */

node b; /**< node bellow */

int s; /**< String-Depth */

};

The DescendQ function returns true when it is possible to descend from
p with Ti[i][j]. Then DescendQ function actually descends with the given
letter. The AddLeaf function creates a new leaf and inserts it into the tree,
in this process it might also be necessary to create a new internal node. The
SuffixLink alters the point p, so that it points to the suffix link of the
current point. This function must implement the skip/count trick of section
6.1.3. An important detail to be mindful about is that the AddLeaf function
should not alter p, the reason for this is that the SuffixLink uses the value in
the slink field, and for recently created nodes this value is not yet available.
In fact assigning this value, for a new node, is another crucial detail, it should
be set by SuffixLink if p is an internal node, otherwise it should be set to
the next new internal node, created on the next call of AddLeaf, this issue is
referred in Lemma 6.1.1.

There is also an important trick to implement generalized suffix trees,
again focusing on reducing the amount of conditional code. In a generalized
suffix tree all terminators should be different symbols. If we where to use
real characters this would limit k to 255− 4, which is too small, particularly
for the larger tests. Moreover handling which characters are terminators,
avoiding the DNA letters could be messy. Alternatively we could use ‘\0’

as a terminator and add code so that the comparison of two terminators
depended on Ti field of the node struct. There is a simpler and cleaner
approach, we can use a ‘\0’ for all terminators as before, except for the Ti

that is currently being inserted into the tree, for that string we use ‘\1’.
Once the string gets inserted into the tree we switch the terminator to ‘\0’

and proceed with the next text. In essence the previous code we showed can
be inserted the middle of the following code:

i = 0;

4

while(i < k)

{

Ti[i][ni[i]] = ‘\1’; /**< Force diferent terminators*/

...

Ti[i][ni[i]] = ‘\0’;

i++;

}

After building the generalized suffix tree the second step is easier. At each
node we store a list representing the set of values of i for which some suffix
T[i] corresponds to a descendent of the node. These lists can be computed
in the finishing time of a DFS visit to the node, by merging the lists of the
children of a node. To merge these lists you can use an array, of size k, that
indicates for index i if a suffix of T[i] is already know to be in the currently
merged list. This allows us to avoid duplicating these indexes, but reseting
the modified entries back to false must be done carefully after each use.

Once we know the size of each list it is possible to search for the node
with the largest sdep value for which the corresponding list contains at least
d elements. Note that we are interested in all the k possible values of d. By
using an array, of size k, it is possible to traverse the suffix tree only once,
instead of k times. Thus reducing the time, of this particular operation, from
O(kn) to O(k + n).

Finally considering memory allocation it is best to make few calls to
malloc and allocate big chunks of memory. In a naive implementations
these functions can easily occupy 25% of the overall time. All the nodes
of the suffix tree can be allocated, after reading the texts, i.e., knowing m,
since there can be no more than 2m+ 1 nodes. This chunk can be reduced
after finishing the tree, but it is not necessary for the memory limits in the
mooshak system. The elements of the stacks for the DFS can be implemented
with linked lists, likewise it is possible to allocate all in one step. Keeping
track of which elements are in use and which are not is straight forward.

1.2 Specification

To automatically validate the index we use the following conventions. The
binary is executed with the following command:

./project < in > out

The file in contains the input commands that we will describe next. The
output is stored in a file named out. The input and output must respect

5

the specification below precisely. The output file will be validated against an
expected result, stored in a file named check, with the following command:

diff out check

This command should produce no output, thus indicating that both files
are identical.

The format of the input file is the following. The first line contains a
single integer, k, i.e., the value indicates the number of strings that follow.

Each of the following k lines starts with a number, mi. This number
indicates the size of the string that follows. Then there is a white space ‘ ’

and finally a string with mi characters from the ‘A’, ‘C’, ‘T’, ‘G’ alphabet.
The input contains no more data.
The output should consist of a single line containing the sizes of the

longest substring that exists in at least d different strings. For all the possible
values of d ranging from 2 to k. Every pair of values is separated by a single
space ‘ ’. There should also be a space before the newline character.

1.3 Sample Behaviour

The following examples show the expected output for the given input. These
files are available on the course web page.

input 1

5

56 TTACCGCCGCATCGGGCTGAGGGGCTATGGGCACGAGACCGCTTTCAATGCATCTT

13 ATCTTTACTTTCA

87 ATCCCTAGTCACGCCGTCATTCGTTATAACCTATATAGGACTGGTGGGGGTATTGTGCGGACCGCTTTCAATGCATCTTGA

70 TTTCATATCCCTAGTCACGCCGTCTTTACTTTCATATCCCTAGTCACGCCGTGAGGACGTGCGGACCGCT

87 TCAATGCATCTTGATCTTTACTTTCATATCCCTAGTCACGCCGTCGTGCGCTTCTGTAGAACAGAAATATTGGTCTCTCGC

output 1

30 18 6 6

input 2

6

6 GGCCGC

57 GTAGGGCCTTCAGTGACTATAGGATGGGGGAATATTCGGCTTCGAAGTTATGAACTA

172 GGCATGGTGACAGTCCGCCGATATTCGCGATTCCAGAGCTATTTTGGACGTCGTTCCGGAGATCCCCTTGGCGGGTCGCA

197 TGCCTACGCTGACTGTTCAAGCGGGATCAAGCCCGTTTAACACTATTCCGCACTATATCGTTCTTCTTCAGTGGAGATGA

6

11 GGCAGTTCGGC

15 GACCGTTATCCAAGT

output 2

55 9 4 3 2

input 3

7

69 GATGCCAGTGACCAGAATACATCATTGTAGAGGCGCGAGATACAGCAGCCGAGGAATGCAAGACCTTTT

35 GCAGAAAGACCGGGCCTATCTTCCGTATTGCGGCA

182 ATGACTCAAAGACAACTTCCACAGGATGATAAAAGCCAAAGCCTCCCTGCAAGCTGGACGGTTCCTGGCTAGGACGCGTG

278 TATCTTCCGTATTGCGGCAAATGACTCAAAGACAACTTCCACAGGATGATAAAAGCCAAAGGTTTGGTTACACGAAGAGT

49 CGGTGCCGAGAGTTCCTATCTTCCTATCTTCCGTATTGCGGCAAATGAC

55 CAAAGACAACTTCCACAGGATGATAAAAGCCAAAGACACACAGGTACAAGGTACC

2 AT

output 3

41 35 6 5 3 2

input 4

9

295 AGTAGTCTACCGTAGGCGTCCGACCCGCAATTATCGGACTGTGATGAGACTGTGGTAATTCACAGATCCGTTGAAGTGAC

76 TGGTTCGGAGCCGTACAAAATATTTAAAGTAAACTGCACTATACTACACATGCCCTCTGGTTCCATCTAGCTAAAC

116 ATCGATTAGGCGACACGGTCTCCGCTTCGGCCCGAATGTGTAGGCCGTCAAGGTAAGTGCCCAACCTTACAGTTGGGTTT

15 TGTGATGAGACTGTG

61 TAATTCACAGATCCGTTGAAGTGACGTGGGGGTGTCAACTTGGTAACATCGTCGTAAGAAA

187 AAAACACGGCGTTGTACAGGACGTGGGAAGGGGGGTCAGATGATTTATATGCCATTTACAGAAATTTACGAACTCATTTT

195 GACTGTGGTAATTCACAGATCCGTTGAAGTGACGTGGGGGTGTCAACTTGGTGATGTGCCCAAACTACTCCTTTCGGTTC

9 ACAGAGTCT

26 CCGTAAATATCGTTATCATCCACAAG

output 4

52 44 8 5 4 3 3 2

input 5

11

305 ATATATAGGGTTGTAAGATGCCCCTACATACCCCTCCGAAATCGTACTCGGAAAATGCTCGGCGGTCCGCTCGATATCTA

7

31 TAACGATGCCTGTGCTAAAGACCCATGAGCT

1 C

149 GGGACCTTTAGCTCGGCGCTCAGTCTGGCTGGCCCGGTGATTCGGATTCCGGTAGCCCGCATCTTGGTGCGGTCACGCTC

176 CCTTGCATCCTGATCCATTAATCAGACAGTCGCCCCGGATAGCGCTGGTGGGGCGGAGTAAACACTCCTAACCGATAGAG

67 TCGCGTACGGCTAAATGGTGTTCCTTACATTACCACGCAAGCCCCCGAAATCGTACTCGGAACGAAA

253 CGTACTCGGAAAATGCTCGGCGGTCCGCTCGATATCTATGATCGGCTGGGGGTTGGTCTCGGCATTTTACATGATACGAA

125 AGCCTCAACAAATCACCCTCCCAACGAAATCGTACTCGGAAAATGCTCGGCGGTCCGCTCGATATCTATGATCGGCTGGG

88 TCTGCGCGACCATCCGAAATCGTACTCGGAAAATGCTCGGCGGTCCGCTCGATATCTATGATCGGCTGGGGGTTGGTCTCG

146 GTCTACATGGCCTGAACGCTGAGGTCCTAAGCCACCCCACATATCATGACGGCCTGAATGTGAGTGCAATCCAGATAAGC

93 CACTTAAACGCCGAACAGCCGCACTGTCCTGGTACTTATGACCTAAATGGCTGATATATCATCGCCGGACCCCCCCCCCAG

output 5

77 75 74 17 7 5 4 3 3 1

input 6

13

76 CATTTCGTGTCTGGCCCTCCACCGATTGTAAGTAGGTACAGCCCCGAACGGCATCAACGTTGGTTTTTCGGCACCC

4 AAAT

471 AACGCTGGGGCCAACTTGGCGTGCACCGATTCTGGTGACCTCGCCCGAAATTCTGCCTATATCAAGACCATCGCTACTTT

207 GGGTAAATGAGCCCGCGGTATGACTAGTAAGATGTCCGGTTCCATATTAGAACGTAATTGTATATTTGATATTATAGGTA

69 GCTATTCACTCGCAACTTGTCGGACATTAGCGGAGTAGTCCCGGCTCAAGTCCTCGAGACAAAAGAGGC

365 TCGATCTCTGTGGTTTTGTGAGCACGTTAATTGTCAGGGTGGCCAGGTTGTATCTGGCGTCAATTTAAGACTGCCCCGAT

224 ACAAAGGTGGCGACTGCGGTCTCAGGTGATCAACATGACGTGCAAGGTCACAGCTGGATATAGCCACGCCTCGCCCCTCC

30 TAACTAACATGGTCTTTTGGATCTACACCA

25 ATGACATTAACAGGAGTTATCCGTG

6 ACCTAG

223 GTTATAGACAACCTAAGTGTATCTCCCCACTTATACTGAATCCCGCAATCACAACAAGTTCATTAAAGGTGGCGACTGCG

111 CTCGCGCGTGTGGAATTTTGAGGACCAGTAAAAGGTGGCGACTGCGGTCTCAGGTGATCAACATGACGTGCAAGGTCACA

287 AATTTCGGTAGGCAGATTCTTTACACCTTATTCCTGTGGGTTACCAGAATCATTATGAGATCGTTTGGCCTACATCGATA

output 6

84 83 82 81 7 6 5 4 3 3 2 1

2 Grading

The final grade will result from the number of points that the students ob-
tain in the mooshak system and an a posteriori code quality analysis. This

8

analysis will include, among other criteria, the results from the valgrind1 and
the lizzard2 tools.

The mooshak system accepts the C programming language, click on Help

button for the respective compiler. Projects that do not compile in the
mooshak system will be graded 0. Only the code that compiles in the
mooshak system will be considered, commented code, or including code in
the report will not be considered for evaluation.

Submissions to the mooshak system should consist of a single file. The
system identifies the language through the file extension, an extension .c

means the C language. The compilation process should produce absolutely
no errors or warnings, otherwise the file will not compile. The resulting
binary should behave exactly as explained in the specification section. Be
mindful that diff will produce output even if a single character is different,
such as a space or a newline.

Notice that you can submit the report to mooshak several times, but there
is a 10 minute waiting period before submissions. You are strongly advised
to submit several times and as early as possible. Only the last version is
considered for grading purposes, all other submissions are ignored. There
will be no deadline extensions. Submissions by email will not be accepted.

References

[1] Gusfield, D. Algorithms on strings, trees, and sequences: computer sci-

ence and computational biology. Cambridge Univ Press, 1997.

[2] TSEARCH(3). In Linux Programmer’s Manual, 2015 (http://man7.org/
linux/man-pages/man3/tsearch.3.html).

1https://www.valgrind.org/
2https://github.com/terryyin/lizard

9

