
Project 2: SIFT Local Feature Matching

CS 4476/6476

Fall 2022

Brief

• Due: Check Canvas for up to date information

• Project materials including report template: Project 2

• Hand-in: through Gradescope

• Required files: <your_gt_username>.zip, <your_gt_username>_proj2.pdf

Figure 1: The top 100 most confident local feature matches from a baseline implementation of project 2. In
this case, 89 were correct (lines shown in green), and 11 were incorrect (lines shown in red).

1

https://gatech.instructure.com/courses/217720
https://github.gatech.edu/cs4476/project-2
https://www.gradescope.com


Overview

The goal of this assignment is to create a local feature matching algorithm using techniques described in
Szeliski chapter 7.1. The pipeline we suggest is a simplified version of the famous SIFT pipeline. The
matching pipeline is intended to work for instance-level matching – multiple views of the same physical
scene.

Setup

1. Check https://github.gatech.edu/cs4476/project-2. for environment installation.

2. Run the notebook using jupyter notebook ./project-2.ipynb

3. After implementing all functions, ensure that all sanity checks are passing by running pytest tests

inside the main folder.

4. Generate the zip folder for the code portion of your submission once you’ve finished the project using
python zip_submission.py --gt_username <your_gt_username>

Details

For this project, you need to implement the three major steps of a local feature matching algorithm (detecting
interest points, creating local feature descriptors, and matching feature vectors). We’ll implement two
versions of the local feature descriptor, and the code is organized as follows:

• Interest point detection in part1_harris_corner.py (see Szeliski 7.1.1)

• Local feature description with a simple normalized patch feature in part2_patch_descriptor.py (see
Szeliski 7.1.2)

• Feature matching in part3_feature_matching.py (see Szeliski 7.1.3)

• Local feature description with the SIFT feature in part4_sift_descriptor.py (see Szeliski 7.1.2)

1 Interest point detection (part1_harris_corner.py)

You will implement the Harris corner detection as described in the lecture materials and Szeliski 7.1.1.

The auto-correlation matrix A can be computed as (Equation 7.8 of book, p. 424)

A = w ∗
[
I2x IxIy
IxIy I2y

]
= w ∗

[
Ix
Iy

] [
Ix Iy

]
(1)

where we have replaced the weighted summations with discrete convolutions with the weighting kernel w
(Equation 7.9, p. 425).

The Harris corner score R is derived from the auto-correlation matrix A as:

R = det(A)− α · trace(A)2 (2)

with α = 0.06.

2

https://www.cs.ubc.ca/~lowe/keypoints/
https://github.gatech.edu/cs4476/project-2/blob/main/README.md


Algorithm 1: Harris Corner Detector

Compute the horizontal and vertical derivatives Ix and Iy of the image by convolving the original
image with a Sobel filter;
Compute the three images corresponding to the outer products of these gradients. (The matrix A is
symmetric, so only three entries are needed.);
Convolve each of these images with a larger Gaussian.;
Compute a scalar interest measure using the formulas (Equation 2) discussed above.;
Find local maxima above a certain threshold and report them as detected feature point locations.;

To implement the Harris corner detector, you will have to fill out the following methods in part1_harris_corner

.py:

• compute_image_gradients(): Computes image gradients using the Sobel filter.

• compute_harris_response_map(): Gets the raw corner responses over the entire image (the previously
implemented methods may be helpful).

• nms_maxpool_pytorch(): Performs non-maximum suppression using max-pooling. You can use PyTorch
max-pooling operations for this.

• get_harris_interest_points(): Gets interests points from the entire image (the previously imple-
mented methods may be helpful).

We have also provided the following helper methods in part1_harris_corner.py:

• get_gaussian_kernel_2D_pytorch(): Creates a 2D Gaussian kernel (this is essentially the same as your
Gaussian kernel method from project 1).

• second_moments(): Computes the second moments of the input image. This makes use of your
get_gaussian_kernel_2D_pytorch() method.

• maxpool_numpy(): Performs the maxpooling operation using just NumPy. This manual implementation
will help you understand what’s happening in the next step.

• remove_border_vals(): Removes values close to the border that we can’t create a useful SIFT window
around.

The starter code gives some additional suggestions. You do not need to worry about scale invariance or
keypoint orientation estimation for your baseline Harris corner detector. The original paper by Chris Harris
and Mike Stephens describing their corner detector can be found here.

2 Part 2: Local feature descriptors (part2_patch_descriptor.py)

To get your matching pipeline working quickly, you will implement a bare-bones feature descriptor in
part2_patch_descriptor.py using normalized, grayscale image intensity patches as your local feature. See
Szeliski 7.1.2 for more details when coding compute_normalized_patch_descriptors()

Choose the top-left option of the 4 possible choices for center of a square window, as shown in Figure
2.

The expected accuracy using Normalized patches on Notre Dame is around 40− 45% and Mt Rushmore
around 45− 50%.

3 Part 3: Feature matching (part3_feature_matching.py)

You will implement the “ratio test” (also known as the “nearest neighbor distance ratio test”) method of
matching local features as described in the lecture materials and Szeliski 7.1.3 (page 444). See equation
7.18 in particular. The potential matches that pass the ratio test the easiest should have a greater tendency

3

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Figure 2: For this example of a 6 × 6 window, the yellow cells could all be considered the center. Please
choose the top left (marked “C”) as the center throughout this project.

to be correct matches – think about why this is. In part3_feature_matching.py, you will have to code
compute_feature_distances() to get pairwise feature distances, and match_features_ratio_test() to perform
the ratio test to get matches from a pair of feature lists.

4 Part 4: SIFT Descriptor (part4_sift_descriptor.py)

You will implement a SIFT-like local feature as described in the lecture materials and Szeliski 7.1.2. We’ll
use a simple one-line modification (“Square-Root SIFT”) from a 2012 CVPR paper (linked here) to get a
free boost in performance. See the comments in the file part4_sift_descriptor.py for more details.

Regarding Histograms SIFT relies upon histograms. An unweighted 1D histogram with 3 bins could
have bin edges of [0, 2, 4, 6]. If x = [0.0, 0.1, 2.5, 5.8, 5.9], and the bins are defined over half-open intervals
[eleft, eright) with edges e, then the histogram h = [2, 1, 2].

A weighted 1D histogram with the same 3 bins and bin edges has each item weighted by some value.
For example, for an array x = [0.0, 0.1, 2.5, 5.8, 5.9], with weights w = [2, 3, 1, 0, 0], and the same bin edges
([0, 2, 4, 6]), hw = [5, 1, 0]. In SIFT, the histogram weight at a pixel is the magnitude of the image gradient
at that pixel.

In part4_sift_descriptor.py, you will have to implement the following:

• get_magnitudes_and_orientations(): Retrieves gradient magnitudes and orientations of the image.

• get_gradient_histogram_vec_from_patch(): Retrieves a feature consisting of concatenated histograms.

• get_feat_vec(): Gets the adjusted feature from a single point.

• get_SIFT_descriptors(): Gets all feature vectors corresponding to our interest points from an image.

The accuracy expected on running the SIFT pipeline on the Notre Dame image is at least 80%. Note that
the Gaudi image pair will have low accuracy (close to 0) and think about why this could be happening.

5 Part 5: SIFT Descriptor Exploration

*This section is required for CS 6476 students and optional for 4476.*

• Experiment with the numerous SIFT parameters: How big should the window around each feature be?
How many local cells should it have? How many orientations should each histogram have? Modify
these parameters in your code and fill out the corresponding items in the report.

4

https://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf


• Take two images of a building or structure near you. Save them in the additional_data/ folder of the
project and run your SIFT pipeline on them. Analyze the results - why do you think our pipeline may
have performed well or poorly for the given image pair? Is there anything about the building that is
helpful or detrimental to feature matching?

6 Writeup

For this project (and all other projects), you must do a project report using the template slides provided
to you. Do not change the order of the slides or remove any slides, as this will affect the grading process
on Gradescope and you will be deducted points. In the report you will describe your algorithm and any
decisions you made to write your algorithm a particular way. Then you will show and discuss the results of
your algorithm. The template slides provide guidance for what you should include in your report. A good
writeup doesn’t just show results–it tries to draw some conclusions from the experiments. You must convert
the slide deck into a PDF for your submission, and then assign each PDF page to the relevant question
number on Gradescope.

If you choose to do anything extra, add slides after the slides given in the template deck to describe your
implementation, results, and analysis. You will not receive full credit for your extra credit implementations
if they are not described adequately in your writeup.

Using the starter code (project-2.ipynb)

The top-level iPython notebook, project-2.ipynb, provided in the starter code includes file handling, visual-
ization, and evaluation functions for you, as well as calls to placeholder versions of the three functions listed
above.

For the Notre Dame image pair there is a ground truth evaluation in the starter code as well. evaluate_

correspondence() will classify each match as correct or incorrect based on hand-provided matches . The
starter code also contains ground truth correspondences for two other image pairs (Mount Rushmore and
Episcopal Gaudi). You can test on those images by uncommenting the appropriate lines in project-2.ipynb.

As you implement your feature matching pipeline, you should see your performance according to evaluate_

correspondence() increase. Hopefully you find this useful, but don’t overfit to the initial Notre Dame image
pair, which is relatively easy. The baseline algorithm suggested here and in the starter code will give you
full credit and work faily well on these Notre Dame images.

Potentially useful NumPy and Pytorch functions

From Numpy: np.argsort(), np.arctan2(), np.concatenate(), np.fliplr(), np.flipud(), np.histogram(),
np.hypot(), np.linalg.norm(), np.linspace(), np.newaxis, np.reshape(), np.sort().

From Pytorch: torch.argsort(), torch.arange(), torch.from_numpy(), torch.median(), torch.nn.functional
.conv2d(), torch.nn.Conv2d(), torch.nn.MaxPool2d(), torch.nn.Parameter, torch.stack().

For the optional, extra-credit vectorized SIFT implementation, you might find torch.meshgrid, torch.norm,
torch.cos, torch.sin.

We want you to build off of your Project 1 expertise. Please use torch.nn.Conv2d or torch.nn.functional

.conv2d instead of convolution/cross-correlation functions from other libraries (e.g., cv.filter2D(), scipy.
signal.convolve()).

5



Forbidden functions

(You can use these OpenCV, Sci-kit Image, and SciPy functions for testing, but not in your final code). cv2.
getGaussianKernel(), np.gradient(), cv2.Sobel(), cv2.SIFT(), cv2.SURF(), cv2.BFMatcher(), cv2.BFMatcher
().match(), cv2.BFMatcher().knnMatch(), cv2.FlannBasedMatcher().knnMatch(), cv2.HOGDescriptor(), cv2.
cornerHarris(), cv2.FastFeatureDetector(), cv2.ORB(), skimage.feature, skimage.feature.hog(), skimage.
feature.daisy, skimage.feature.corner_harris(), skimage.feature.corner_shi_tomasi(), skimage.feature
.match_descriptors(), skimage.feature.ORB(), cv.filter2D(), scipy.signal.convolve().

We haven’t enumerated all possible forbidden functions here, but using anyone else’s code that performs
interest point detection, feature computation, or feature matching for you is forbidden.

Tips, tricks, and common problems

• Make sure you’re not swapping x and y coordinates at some point. If your interest points aren’t
showing up where you expect, or if you’re getting out of bound errors, you might be swapping x and
y coordinates. Remember, images expressed as NumPy arrays are accessed image[y, x].

• Make sure your features aren’t somehow degenerate. you can visualize features with plt.imshow(

image1_features), although you may need to normalize them first. If the features are mostly zero or
mostly identical, you may have made a mistake.

• If you receive the error message ”pickle.UnpicklingError: the STRING opcode argument must be
quoted”, the .pkl files in the ground truth folder likely have CRLF line endings from cloning. You can
convert these to LF easily in VSCode by clicking ”CRLF” in the bottom right, toggling it to ”LF”,
and saving or using a tool like dos2unix.

Bells & whistles (extra points) / Extra Credit

Implementation of bells & whistles can increase your grade on this project by up to 10 points (potentially
over 100). The max score for all students is 110.

For all extra credit, be sure to include quantitative analysis showing the impact of the particular method
you’ve implemented. Each item is “up to” some amount of points because trivial implementations may not
be worthy of full extra credit.

As detailed in lecture, there are numerous opportunities for extra credit. These include:

• Implement a vectorized version of SIFT. There are provided tests that check if it runs in under 5
seconds, with at least 80% accuracy on the Notre Dame image pair to make it simple to check (this is
just one of the options).

• Detecting keypoints at multiple scales/picking the best scale for a given image

• Making keypoints rotation invariant

• Implementing a different interest point detection strategy

• Implementing a different feature descriptor

Rubric 4476

• +20 pts: Implementation of Harris corner detector in part1_harris_corner.py

• +10 pts: Implementation of patch descriptor part2_patch_descriptor.py

6



• +10 pts: Implementation of “ratio test” matching in part3_feature_matching.py

• +40 pts: Implementation of SIFT-like local features in part4_sift_descriptor.py

• +20 pts: Report

• -5*n pts: Lose 5 points for every time you do not follow the instructions for the hand-in format

Rubric 6476

• +15 pts: Implementation of Harris corner detector in part1_harris_corner.py

• +10 pts: Implementation of patch descriptor part2_patch_descriptor.py

• +10 pts: Implementation of “ratio test” matching in part3_feature_matching.py

• +40 pts: Implementation of SIFT-like local features in part4_sift_descriptor.py

• +25 pts: Report

• -5*n pts: Lose 5 points for every time you do not follow the instructions for the hand-in format

Submission format

This is very important as you will lose 5 points for every time you do not follow the instructions. You will
submit two items to Gradescope:

1. <your_gt_username>.zip containing:

• src/: directory containing all your code for this assignment

• setup.cfg: setup file for environment, no need to change this file

• additional_data/: (required for 6476, optional for 4476) the images you took for Part 5, and/or
if you use any data other than the images we provide, please include them here

• README.txt: (optional) if you implement any new functions other than the ones we define in the
skeleton code (e.g., any extra credit implementations), please describe what you did and how we
can run the code. We will not award any extra credit if we can’t run your code and verify the
results.

2. <your_gt_usernamme>_proj2.pdf - your report

Credits

Assignment developed by James Hays, Cusuh Ham, John Lambert, Vijay Upadhya, and Samarth Brahmb-
hatt.

7


	Interest point detection (part1harriscorner.py)
	Part 2: Local feature descriptors (part2patchdescriptor.py)
	Part 3: Feature matching (part3featurematching.py)
	Part 4: SIFT Descriptor (part4siftdescriptor.py)
	Part 5: SIFT Descriptor Exploration
	Writeup

