
CMSC 216 Project #6 Spring 2018
A Simple Shell Wed May 2, 8:00PM, Tue May 8, 8:00PM

1 Overview
In this project, you will write the guts of a shell that will support boolean operations, pipes, and file redirection.
The project has two deadlines:

• Wed May 2, 8:00PM - Your code must pass the following public tests: public00/01/02/06/07/11. That
is the only requirement for this deadline. We will not grade the code for style. This first part is worth
.5% of your course grade (NOT .5% of this project grade). Notice you can still submit late for this part.

• Tue May 8, 8:00PM - Final deadline for the project. Notice you can still submit late (as usual).

2 Procedure
2.1 Obtain the project files
We have supplied several files for your use in this project:

command.h defines the tree structure that the parser will produce from a command line, and the conjunctions
that join commands into a line.

d8sh.c is the main shell loop. You need not modify this file, but it may be useful to inspect for generating test
cases.

executor.c is where you must implement the function int execute(struct tree *t), which will take a tree
from the parser and execute the commands in the tree. The return value of execute may be used as you
like, e.g., for exit status or for a process id, if you choose to call execute recursively.

executor.h is the declaration of execute, used by the parser.

lexer.c is the lexer, which splits a command line into tokens, generated by flex.

lexer.h declares lexer related functions referenced by d8sh.

parser.tab.c is the parser, which assembles tokens into a parsed tree, generated by bison.

parser.tab.h is a part of the parser, generated by bison, referenced by lexer.c.

run-all-tests.csh checks for Makefile and d8sh, then compares the output of your d8sh using the command
lines in the testing subdirectory.

These files are contained in ~/216public/project6. Your code for this project should be contained in your
~/216/project6 subdirectory.

2.2 Create a Makefile

Create a Makefile that we will use to build your shell. Section 3.1 lists the targets you are required to imple-
ment, as well as other requirements for your Makefile.

2.3 Implement and test the shell
You must implement your shell program by supplying the necessary code in executor.c. As you implement
various features of the shell, you can test them by either interactively running d8sh while typing in commands,
or you can create text files with one command per line, and use redirection to feed them as input to your shell.

The video https://tinyurl.com/yadjttla can help you understand what you need to implement for this
project. Start watching the video at time 19:13.

1

https://tinyurl.com/yadjttla

3 Specifications
3.1 Makefile

Your Makefile should be set up so that all programs are built using separate compilation (i.e., source files are
turned into object files, which are then linked together in a separate step). All object files should be built using
the class flags.

You must have the following targets in your Makefile:

1. all: make all executables

2. clean: delete all object files and executables

3. lexer.o, parser.tab.o, executor.o, and d8sh.o, the object files for the parsing code and shell code

4. d8sh: the executable created by linking the parsing object file with the shell object files and linked with
the readline library using -lreadline.

We will use the Makefile you provide to build the public test executables on the submit server; if there is no
Makefile, your shell program will not be built, and you will not receive credit for any tests.

You may have other targets, for example “test”.

3.2 The Shell
The shell you will implement will include some, but not all features, of the shell you use on grace. The features
your shell supports will include pipes, input and output redirection, and the “&&” operator.

The parser may permit a few more operations that you need not support. In particular, the “||” and “;”
operators exist in the format, but need not be supported by your code.

To invoke the parser, d8sh uses readline(), then yy_scan_string(buffer), followed by yyparse(). (Typi-
cally, a bison parser would load a file such as your C source. Here, we are using this system to operate on a
string.) When the parser constructs a complete tree from a command line, it invokes your execute() function.

You are given the main shell program in d8sh.c: your task is to implement the execute() function called by
main(). Once the full d8sh program is linked together from the four object files, d8sh should function as a
normal shell, with some limitations as described below.

The syntax for the features we want you to implement is very similar to the shell syntax you should be familiar
with from your experience working with the Unix environment. These are the specific features your shell must
provide:

1. File redirection: by using the < and > tokens, a user should be able to redirect standard input and output
in the same manner as is done in the tcsh and bash shells.

If a file is created by output redirection, the file should be created using permissions 0664.

In the case of a multi-program pipeline, file input redirection may be applied to the first program (before
the first pipe character), and file output redirection may be applied to the final program. A shell must
print “Ambiguous input redirect.” or “Ambiguous output redirect.” if a user tries to provide a redirected
file and a pipe at the same time. For example, the following is illegal “echo hello > x | cat”.

2. Piping: if programs are separated by pipe characters (“|”) on a command line, then the standard output
of the program to the left of the pipe character is to be connected to the standard input of the program
to the right of the pipe character, creating a pipeline.

When running a pipeline, the shell must start all of the processes, but not return to print another prompt
until all processes have exited. You will need to determine how to fork all the processes piped together
and then wait for them all to finish.

2

3. Subshells: when expressions are surrounded by parentheses, the command is executed in its own shell,
forked from the parent. This ensures that environment changes (such as changing the current directory)
are contained to the subshell.

As you can see from the code in d8sh.c, the shell prompts the user for a command, parses the command, and
then attempts to execute the command. To execute the command, you must use the struct tree * parameter
to see which options are set, and perform the steps necessary to execute the command as requested.

Should you encounter any errors in executing the command, your shell must not terminate – children of
the shell may terminate, but the code you write in execute() must not cause the parent (shell) process to
terminate. A user should not cause the shell to die because he/she, for example, mistyped the name of a
program to execute.

If your shell cannot exec any process, it should print, “Failed to execute %s” with the name of the program
that failed. Other failed system calls should print using perror, e.g., perror("fork"). The shell is already
configured for parse errors to print as “Parse error: %s” via the yyerror() function.

4 Example Trees
You may want to print out the contents of each parse tree you work on. Here are some examples.

AND

l r

echo hello

l r

PIPE

l r

echo goodbye

l r

grep oo

l r

echo hello && echo goodbye | grep oo

Note that the pipe operation has a higher precedence
than and. As a result, “hello” is printed to stdout
and does not pass through grep. The grep command
prints all lines that include a given string, so will
print “goodbye” because it includes “oo”.

PIPE

l r

PIPE

l r

cat

l r

PIPE

l r

cat

l r

PIPE

l r

cat

l r

cat command.h

l r

cat

l r

cat command.h | cat | cat | cat | cat

The “cat” tool can either read input from arguments
or from stdin, then pass it to stdout. Using pipe, fork,
dup2, and exec to build pipelines in tree form can be
subtle. The contents of command.h should appear
on the output. (This is a better example than it is a
test; tests may use tac instead of cat to reverse the
file.)

3

AND

l r

true

l r

AND

l r

false

l r

AND

l r

[-e a.c]

l r

AND

l r

PIPE

l r

[-x b.c]

l r

echo 2-1

l r

bc

l r

true && false && [-e a.c] && echo 2-1 | bc && [-x b.c]

Again, pipe has a higher precedence. Execu-
tion should stop at the first false. true runs the
/usr/bin/true program, whose only purpose is to
exit(0), a successful result. (See: “man true” and
“man false” for more information. There are a few
trivial programs like this, for example, “yes” and
“seq”. You must use the wait() or waitpid() func-
tions to determine whether the program exited suc-
cessfully).

SUBSHELL

< lexer.h

l r

AND

l r

head -2

l r

head -2

l r

(head -2 && head -2) < lexer.h

Note how the shell prints the first four lines of lexer.h
if given this command. Beware, however, the first
head command might use buffered I/O and thereby
slurp more data than just the first two lines, leaving
the second head command to print two lines from
the middle of a longer file. (It does work on grace
and submit.) More reliable would be to redirect out-
put instead of input.

AND

l r

pwd

l r

AND

l r

cd ..

l r

pwd

l r

pwd && cd .. && pwd

This will output the current directory, change to its
parent, and output the parent. For the next com-
mand, the current directory will be the parent.

AND

l r

SUBSHELL

l r

pwd

l r

AND

l r

pwd

l r

cd ..

l r

(pwd && cd ..) && pwd

This will output the current directory and change to
its parent in a subshell, then output the current di-
rectory again (unchanged). For the next command,
the current directory will unchanged.

4

AND

l r

mkdir ../bkup

l r

PIPE

l r

tar cf - .

l r

SUBSHELL

l r

AND

l r

cd ../bkup

l r

tar xf -

l r

mkdir ../bkup && tar cf - . | (cd ../bkup && tar xf -)

This is an example of using cd in a subshell in prac-
tice to backup a directory. The cd affects only the
second tar (extract rather than create). This creates a
directory, ../otherdir, then copies the contents of the
current directry into it using tar. The current work-
ing directory after this command is unchanged (not
bkup). From a subshell, environment (working di-
rectory) changes do not escape.

PIPE

l r

SUBSHELL

l r

tar xf -

l r

AND

l r

cd ../bkup

l r

tar cf - .

l r

(cd ../bkup && tar cf - .) | tar xf -

If the previous example created a backup, this one
restores it. The cd affects only the first tar, leaving
the current working directory for the next command
where it was. The command will fail if “bkup” is not
present.

5

5 Important Points and Hints
1. Start by handling nodes with conjunction NONE, i.e., no pipes, no ands. Add redirection, pipes, and the

and operation incrementally.

2. execute() must implement internally the commands “cd” and “exit”. The “cd” command should change
to the user’s home directory (getenv("HOME")) if given no arguments.

3. Be sure to wait for all child processes of your shell to complete; failing to do so will cause a collection of
zombie processes to accumulate and tie up Grace system resources.

4. Be careful that any fork loops you write terminate at some point, before a Grace system administrator
has to kill them.

5. You may wish to print the contents of the tree before execution. Each node is either an internal node of
the tree, representing a PIPE or an AND, or a leaf node, representing a command with argv set. Any
node, including internal nodes may have input and output redirection. Your shell should mimic real
shells for the following commands:

(head && head) < lexer.h

(head < lexer.h && head < lexer.h)

(cat command.h | cat - command.h)

(cat < command.h | cat - command.h)

6. You are permitted to translate the tree structure into whatever representation you prefer. (This is not
encouraged.)

7. You need not free the data or nodes in the parse tree. Yes, this will leak memory.

8. Closing the correct file descriptors for a pipe at the correct time can be tricky. All the file descriptors for
writing must be closed before a reader will see the end of file and exit. If the shell hangs, there’s probably
a process waiting for more input that will never come.

9. Don’t get excited and modify the shell prompt to make it look more shell like; that may have bad conse-
quences on the submit server.

10. Please consider using git locally to track your changes; for example, supporting AND may break your
design for PIPE, and it may be useful to go back in time to find your working solution.

6 Grading Criteria
Your project grade will be determined by the following formula:

Results of public tests 40%
Results of secret tests 60%

The public tests will be made available shortly after the project is released. You can find out your results on
these tests by checking the submit server a few minutes after submitting your project. Secret tests, and their
results, will not be released until after the project’s late deadline has passed.

Public tests for this project consist of input files to be read by your shell via standard input, and checked
against the expected output, for example like this:

./d8sh < public00.in | diff - public00.output

We’ve put the public tests in the testing subdirectory, and some of these tests use extra input files from the
current directory. The run-all-tests.csh script temporarily links those files to the current directory. Consider
inspecting that script for more examples of booleans in shell commands.

6

7 Submission
7.1 Deliverables
The only files we will grade are (a) your Makefile; and (b) executor.c, which contains your shell implemen-
tation. We will use our versions of all other files to build tests, so do not make any changes to other files.

7.2 Procedure
To limit the number of processes your shell implementation can create when you run it on the Grace machines,
ensure that the line limit maxproc 20 is present in the .cshrc.mine file in your home directory. This is part
of the 216 setup script. Run “limit” to check that it is set.1

As for previous projects, executing “submit” in your project directory will submit your project. We encourage
you to run public tests on Grace rather than submitting to the submit server and waiting for your submission
to be evaluated; it is much faster for you to see your results if you run the tests yourself, and the submit server
works much more quickly if the class makes fewer submissions.

8 Other Notes
8.1 Academic Integrity
As noted in the syllabus, any evidence of cheating will be referred to the Student Honor Council and may
result in a grade of XF in this course. Submissions will be checked with an automated source code comparison
tool to look for evidence of copying, collaborative work, and use of prohibited online materials.

8.2 Deadlines
Submission deadlines are strictly enforced by the submit server, and we will not extend them for events such
as network outages. Extensions may be given on a case-by-case basis, but will likely only be granted for
medical or other unforseeable cases. Therefore, you should start work on this project soon, as last-minute
technical problems are not an excuse for missing either the on-time or late deadline.

1If you use bash instead of tcsh, the command is ulimit -u 20 .

7

	Overview
	Procedure
	Obtain the project files
	Create a Makefile
	Implement and test the shell

	Specifications
	Makefile
	The Shell

	Example Trees
	Important Points and Hints
	Grading Criteria
	Submission
	Deliverables
	Procedure

	Other Notes
	Academic Integrity
	Deadlines

