
CSE6250: Big Data Analytics in Healthcare

Homework 3

Jimeng Sun

Deadline: Feb 25, 2018, 11:55 PM AoE

• Discussion is encouraged, but each student must write his/her own answers and ex-

plicitly mention any collaborators.

• Each student is expected to respect and follow the GT Honor Code.

• Please type the submission with LATEX or Microsoft Word. We will not accept hand

written submissions.

• Please do not change the filenames and function definitions in the skeleton code pro-

vided, as this will cause the test scripts to fail and subsequently no points will be

awarded.

Overview

Accurate knowledge of a patient’s disease state is crucial to proper treatment, and we must

understand a patient’s phenotypes (based on their health records) to predict their disease

state. There are several strategies for phenotyping including supervised rule-based methods

and unsupervised methods. In this homework, you will implement both type of phenotyping

algorithms using Spark.

Prerequisites [0 points]

This homework is primarily about using Spark with Scala. We strongly recommend using

our bootcamp virtual environment setup to prevent compatibility issues. However, since we

use the Scala Build Tool (SBT), you should be fine running it on your local machine. Note

this homework requires Spark 1.3.1 and is not compatible with Spark 2.0 and later. Please

see the build.sbt file for the full list of dependencies and versions.

Begin the homework by downloading the hw3.tar.gz from Canvas, which includes the

skeleton code and test cases.

1

http://osi.gatech.edu/content/honor-code
http://www.sunlab.org/teaching/cse6250/spring2018/lab/environment/
http://www.scala-sbt.org/

You should be able to immediately begin compiling and running the code with the fol-

lowing command (from the code/ folder):

sbt/sbt compile run

And you can run the test cases with this command:

sbt/sbt compile test

1 Programming: Rule based phenotyping [30 points]

Phenotyping can be done using a rule-based method. The Phenotype Knowledge Base

(PheKB) provides a set of rule-based methods (typically in the form of decision trees) for

determining whether or not a patient fits a particular phenotype.

In this assignment, you will implement a phenotyping algorithm for type-2 diabetes based

on the flowcharts below. The algorithm should:

• Take as input event data for diagnoses, medications, and lab results.

• Return an RDD of patients with labels (label=1 if the patient is case, label=2 if the

patient is control, label=3 otherwise).

You will implement the Diabetes Mellitus Type 2 algorithms from PheKB. We have re-

duced the rules for simplicity, which you can find in the images below. However, you can

refer to the full description for more details if desired.

The following files in code/data/ folder will be used as inputs:

• encounter INPUT.csv: Each line represents an encounter and contains a unique

encounter ID, the patient ID (Member ID), and many other details about the counter.

Hint: sql join

• encounter dx INPUT.csv: Each line represents an encounter and contains any re-

sulting diagnoses including a description and ICD9 code.

• medication orders INPUT.csv: Each line represents a medication order including

the name of the medication.

• lab results INPUT.csv: Each line represents a lab result including the name of the

lab (Result Name), the units of the lab output, and lab output value.

2

https://phekb.org
https://phekb.org
http://jamia.oxfordjournals.org/content/19/2/219.long

Type 2 DM
medication
precedes
Type 1 DM
medication

Order for
Type 2 DM
medication

Order for
Type 1 DM
medication

Type 2
DM

diagnosis

Type 1
DM

diagnosis
Data

CASE

NO

NO

YES

YES

YES

NO

YES

Figure 1: Determination of cases

For your project, you will load input CSV files from the code/data/ folder. You are respon-

sible for transforming the .csv’s from this folder into RDDs.

The simplified rules which you should follow for phenotyping of Diabetes Mellitus Type

2 are shown below. These rules are based off of the criteria from the PheKB phenotypes,

which have been placed in the phenotyping resources/ folder.

• Requirements for Case patients: Figure 1 details the rules for determining whether

a patient is case. Certain parts of the flowchart involve criteria that you will find in

the phekb criteria/ folder as outlined below:

– T1DM DX.csv: Any ICD9 codes present in this file will be sufficient to result

in YES for the Type 1 DM diagnosis criteria.

– T1DM MED.csv: Any medications present in this file will be sufficient to result

in YES for the Order for Type 1 DM medication criteria. Please also use this list

for the Type 2 DM medication preceeds Type 1 DM medication criteria.

3

– T2DM DX.csv: Any of the ICD9 codes present in this file will be sufficient to

result in YES for the Type 2 DM diagnosis criteria.

– T2DM MED.csv: Any of the medications present in this file will be sufficient

to result in YES for the Order for Type 2 DM medication criteria. Please also use

this list for the Type 2 DM medication preceeds Type 1 DM medication criteria.

Diabetes
Mellitus
related
diagnosis

Abnormal
Lab Value

Any type of
Glucose
measure

Data

CONTROL

YES

NO

NO

Figure 2: Determination of controls

• Requirements for Control patients: Figure 2 details the rules for determining

whether a patient is control. Certain parts of the flowchart involve criteria that you

will find in the phekb criteria/ folder as outlined below:

– ABNORMAL LAB VALUES CONTROL.csv: Any values described in this

file should be considered abnormal for the Abnormal Lab Value criteria.

– DM RELATED DX.csv: Any ICD9 codes present in this file will be sufficient

to result in YES for the Diabetes Mellitus related diagnosis criteria.

In order to help you verify your steps, expected counts along the different steps have been

provided in:

• phenotyping resources/expected count case.png

• phenotyping resources/expected count control.png

Any patients not found to be in the control or case category should be placed in the

unknown category. Additional hints and notes are provided directly in the code comments,

so please read these carefully.

4

a. Implement edu.gatech.cse8803.main.Main.loadRddRawData to load the input .csv files

in the data folder as structured RDDs. [5 points]

b. Implement edu.gatech.cse8803.phenotyping.T2dmPhenotype to:

- Correctly identify case patients [10 points]

- Correctly identify control patients [10 points]

- Correctly identify unknown patients [5 points]

2 Programming: Unsupervised Phenotyping via Clus-

tering [40 points]

At this point you have implemented a supervised, rule-based phenotyping algorithm. This

type of method is great for picking out specific diseases, in our case diabetes, but they are not

good for discovering new, complex phenotypes. Such phenotypes can be disease subtypes

(i.e. severe hypertension, moderate hypertension, mild hypertension) or they can reflect

combinations of diseases that patients may present with (e.g. a patient with hypertension

and renal failure). This is where unsupervised learning comes in.

2.1 Feature Construction [16 points]

You will need to start by constructing features out of the raw data to feed into the clustering

algorithms. You will need to implement ETL using Spark with similar functionality as what

you did in last homework using Pig. Since you know the diagnoses (in the form of ICD9 codes)

each patient exhibits and the medications they took, you can aggregate this information to

create features. Using the RDDs that you created in edu.gatech.cse8803.main.Main.loadRddRawData,

you will construct features for the COUNT of medications, COUNT of diagnoses, and AV-

ERAGE lab test value.

a. Implement the feature construction code in edu.gatech.cse8803.features.FeatureConstruction

to create two types of features: one using all the available ICD9 codes, labs, and medications,

and another using only features related to the phenotype. See the comments of the source

code for details.

2.2 Evaluation Metric [8 points]

Purity is a metrics to measure the quality of clustering, it’s defined as

purity(Ω, C) =
1

N

∑
k

max
j
|wk ∩ cj|

5

where N is the number of samples, k is index of clusters and j is index of class. wk denotes

the set of samples in k-th cluster and cj denotes set of samples of class j.

a. Implement the purity function in edu.gatech.cse8803.clustering.Metrics

2.3 K-Means Clustering [5 points]

Now you will perform clustering using Spark’s MLLib, which contains an implementation of

the k-means clustering algorithm as well as the Gaussian Mixture Model algorithm.

From the clustering, we can discover groups of patients with similar characteristics. You

will cluster the patients based upon diagnoses, labs, and medications. If there are d distinct

diagnoses, l distinct medications and m medications, then there should be d + l + m distinct

features.

a. Implement k-means clustering for k = 3. Follow the hints provided in the skeleton

code in edu.gatech.cse8803.main.Main.scala:testClustering.

b. Compare clustering for the k = 3 case with the ground truth phenotypes that you

computed for the rule-based PheKB algorithms. Specifically, for each of case, control and

unknown, report the percentage distribution in the three clusters for the two feature con-

struction strategies. Report the numbers in the format shown in Table 1 and Table 2.

Percentage Cluster Case Control Unknown
Cluster 1 x% y% z%
Cluster 2 xx% yy% zz%
Cluster 3 xxx% yyy% zzz%

100% 100% 100%

Table 1: Clustering with 3 centers using all features

Percentage Cluster Case Control Unknown
Cluster 1 x% y% z%
Cluster 2 xx% yy% zz%
Cluster 3 xxx% yyy% zzz%

100% 100% 100%

Table 2: Clustering with 3 centers using filtered features

2.4 Clustering with Gaussian Mixture Model (GMM) [5 points]

a. Implement GaussianMixture for k = 3. Follow the hints provided in the skeleton code in

edu.gatech.cse8803.main.Main.scala:testClustering.

6

b. Compare clustering for the k = 3 case with the ground truth phenotypes that you

computed for the rule-based PheKB algorithms. Specifically, for each of case, control and

unknown, report the percentage distribution in the three clusters for the two feature con-

struction strategies. Report the numbers in the format shown in Table 1 and Table 2.

2.5 Clustering with Streaming K-Means [5 points]

When data arrive in a stream, we may want to estimate clusters dynamically and update

them as new data arrives. Spark’s MLLib provides support for the streaming k-means

clustering algorithm that uses a generalization of the mini-batch k-means algorithm with

forgetfulness.

a. Show why we can use streaming K-Means by deriving its update rule and then describe

how it works, the pros and cons of the algorithm, and how the forgetfulness value balances

the relative importance of new data versus past history.

b. Implement StreamingKMeans algorithm for k = 3. Follow the hints provided in the

skeleton code in edu.gatech.cse8803.main.Main.scala:testClustering.

c. Compare clustering for the k = 3 case with the ground truth phenotypes that you

computed for the rule-based PheKB algorithms. Specifically, for each of case, control and

unknown, report the percentage distribution in the three clusters for the two feature con-

struction strategies. Report the numbers in the format shown in Table 1 and Table 2.

2.6 Discussion on K-means and GMM [6 points]

We’ll now summarize what we’ve observed in the preceeding sections:

a. Briefly discuss and compare what you observed in 2.3b using the k-means algorithm

and 2.4b using the GMM algorithm.

b. Re-run k-means and GMM from the previous two sections for different k (you may

run it each time with different k). Report the purity values for all features and the filtered

features for each k by filling in Table 3. Discuss any patterns you observed, if any.

NOTE: Please change k back to 3 in your final code deliverable!

K-Means K-Means GMM GMM
k All features Filtered features All Features Filtered features
2
5
10
15

Table 3: Purity values for different number of clusters

7

3 Advanced phenotyping with NMF [20 points]

Given a feature matrix V , the objective of NMF is to minimize the Euclidean distance

between the original non-negative matrix V and its non-negative decomposition W × H

which can be formulated as

argmin
W�0,H�0

1

2
||V −WH||22 (1)

where V ∈ Rn×m
≥0 , W ∈ Rn×r

≥0 and H ∈ Rr×m
≥0 . V can be considered as a dataset comprised

of n number of m-dimensional data vectors, and r is generally smaller than n.

To obtain a W and H which will minimize the Euclidean distance between the original

non-negative matrix B, we use the Multiplicative Update (MU). It defines the update rule

for Wij and Hij as

W t+1
ij = W t

ij

(V H>)ij
(W tHH>)ij

H t+1
ij = H t

ij

(W>V)ij
(W>WH t)ij

Pseudo-code for the rule is listed below.

1 Initialize W ,H randomly;
2 repeat
3 /* Updating W [i, :] */

4 Save HH> as a global variable Hs;
5 W t+1[i, :] = W t[i, :]� V [i, :]H> � (W t[i, :]Hs)

−1

6 /* Updating H[:, i] */

7 Save W>W as a global variable Ws;
8 H t+1[:, i] = H t[:, i]�W>V [:, i]� (WsH

t[:, i])−1

9 until 1
2
||V −WH||22 < ε;

You will decompose your feature matrix V , from 2.1, into W and H . In this equation,

each row of V represents one patient’s features and a corresponding row in W is the patient’s

cluster assignment, similar to a Gaussian mixture. For example, let r = 3 to find three

phenotype(cluster), if row 1 of W is (0.23, 0.45, 0.12), you can say this patient should be

group to second phenotype as 0.45 is the largest element.

W can be very large, i.e. a billion patients, which must be worked on in a distributed

fashion while H is relatively small and can fit into a single machine’s memory. You will define

these two types of matricies as distributed RowMatrix and local dense Matrix respectively

in the skeleton code.

a. Implement the algorithm, as previously described, in edu.gatech.cse8803.clustering.NMF.

[15 points]

8

b. Run NMF clustering for k = 2, 3, 4, 5 and report the purity for two kinds of feature

construction. [5 points]

c. Compare clustering for the k = 3 case with the ground truth phenotypes that you

computed for the rule-based PheKB algorithms. Specifically, for each of case, control and

unknown, report the percentage distribution in the three clusters for the two feature con-

struction strategies. Report the numbers in the format shown in Table 1 and Table 2. [5

points]

d. Show why we can use MU update rule by deriving the equation for it. [10 points

bonus]

4 Submission [5 points]

The folder structure of your submission should be as below or your code will not be graded.

You can display fold structure using tree command. All other unrelated files will be dis-

carded during testing. You may add additional methods, additional dependencies, but make

sure existing methods signature doesn’t change. It’s your duty to make sure your code can

be compiled with the provided SBT. Be aware that writeup is within code root.

<your gtid >-<your gt account >-hw3

|-- homework3answer.pdf

|-- build.sbt

|-- project

| |-- build.properties

| \-- plugins.sbt

|-- sbt

| \-- sbt

\-- src

\-- main

|-- java

|-- resources

\-- scala

\-- edu

\-- gatech

\-- cse8803

|-- clustering

| |-- NMF.scala

| |-- Metrics.scala

| \-- package.scala

|-- features

| \-- FeatureConstruction.scala

9

|-- ioutils

| \-- CSVUtils.scala

|-- main

| \-- Main.scala

|-- model

| \-- models.scala

\-- phenotyping

\-- PheKBPhenotype.scala

Create a tar archive of the folder above with the following command and submit the tar file.

tar -czvf <your gtid >-<your gt account >-hw3.tar.gz \

<your gtid >-<your gt account >-hw3

10

	Programming: Rule based phenotyping [30 points]
	Programming: Unsupervised Phenotyping via Clustering [40 points]
	Feature Construction [16 points]
	Evaluation Metric [8 points]
	K-Means Clustering [5 points]
	Clustering with Gaussian Mixture Model (GMM) [5 points]
	Clustering with Streaming K-Means [5 points]
	Discussion on K-means and GMM [6 points]

	Advanced phenotyping with NMF [20 points]
	Submission [5 points]

