
University of California, Davis
Department of Electrical and Computer Engineering

EEC180B DIGITAL SYSTEMS II Spring Quarter 2010

LAB 3: Memory System Design / Booth Multiplier Design

Objective: In the first part of the lab, you will use Verilog to model RAM modules. In the
second part, you will design a multiplier for signed binary numbers using Booth’s
algorithm.

I. RAM

There are several ways to implement a memory component in an Altera FPGA. One
method is to instantiate a RAM module from the Quartus II Library of Parameterized
Modules. The MegaWizard Plug-in Manager enables you to configure the RAM module
to fit your desired specifications. Another way to implement a memory component is to
model it behaviorally in Verilog. In this lab, you will implement memory components
using behavioral modeling.

Memory can be specified in Verilog as a two-dimensional array. For example, a memory
with 32 words and 8-bits per word can be declared with the statement:

 reg [7:0] memory [31:0];

In the Cyclone II FPGA, memory can be implemented either using flip-flops or by using
dedicated memory resources within the FPGA known as M4K blocks. Each M4K block
contains 4096 memory bits that can be configured to implement various memory
modules. The EP2C35 FPGA that we are using contains 105 M4K blocks for a total of
483,840 total RAM bits. Depending on how you write your Verilog code, the Quartus II
compiler will either infer flip-flops or M4K memory blocks to implement your memory
device.

In this part, you will design two 16x8 RAM modules and implement them in the Altera
DE2 board. The block diagram for a 16x8 RAM is shown in Figure 1.

Figure 1. A 16x8 RAM module

 2

You will test your memory modules using the switches, LEDs and 7-segment displays on
the Altera DE2 board. The I/O device assignments are as follows:

I/O signal DE2 device

Write Enable (for both RAM modules) SW[17]
Select RAM module for writing SW[16]
Clock KEY[0]
Address (for both RAM modules) SW[13:10]
Data_In (for both RAM modules) SW[7:0]
Address Display HEX6
Data_In Display HEX5, HEX4
RAM1 Data_Out Display HEX3, HEX2
RAM0 Data_Out Display HEX1, HEX0

Your memory modules must operate as follows:

• Only one RAM module (RAM1 or RAM0) can be written into at a time.
• The Select switch (SW[16]) determines which memory module will be written.
• A write operation will occur to the selected RAM module on a positive Clock

transition when the Write Enable signal is active (high).
• Both RAM modules can be read to their respective 7-segment displays

simultaneously.
• The RAM output data can be either clocked (synchronous) or unclocked

(asynchronous).

Perform the following steps:

1. Write the Verilog code to implement the two 16x8 RAM modules on the Altera
DE2 board in M4K blocks. (See the Quartus II Help documents on
“Implementing Inferred RAM” for code examples.) Compile your program.
Verify that your code infers M4K memory blocks by examining the Compilation
Report. Ideally, you should also determine how to infer flip-flops for your
memory devices instead of M4K blocks.

2. Modify your Verilog design to specify the initial contents of your RAM modules.

The easiest way to do this is by using an initial construct. For example, you could
use a for-loop within an initial block to initialize the RAM contents. Another
option is to use a MIF (Memory Initialization File) to assign initial values. (See
the Quartus II Help documentation on “Specifying the Initial Contents of Inferred
Memories in Verilog HDL Designs” for information on both methods of memory
initialization.) The initial construct is probably more straight-forward for our
application.

3. Download and test your design. Demonstrate to your TA that you can read out the

initial contents of your RAM modules and also that you can write new values to
the RAMs.

 3

II. Booth’s Multiplier Design

In this part, you will use Verilog to design and simulate a multiplier for twos
complement, signed binary numbers using Booth’s algorithm. This specification of
Booth’s algorithm is taken from problem 4.15 in Digital Systems Design Using VHDL,
by Charles Roth, PWS Publishing Company, 1998.

“Booth’s algorithm works as follows, assuming each number is n bits including sign: Use
an (n+1)-bit register for the accumulator (A) so the sign bit will not be lost if an overflow
occurs. Also, use an (n+1)-bit register (B) to hold the multiplier and an n-bit register (C)
to hold the multiplicand.

1. Clear A (the accumulator), load the multiplier into the upper n bits of B, clear B0,
and load the multiplicand into C.

2. Test the lower two bits of B (B1B0).
If B1B0 = 01, then add C to A (C should be sign-extended to n+1 bits and
added to A using an (n+1)-bit adder).
If B1B0 = 10, then add the 2’s complement of C to A.
If B1B0 = 00 or 11, skip this step.

3. Shift A and B together right one place with sign extended.
4. Repeat steps 2 and 3, n-1 more times.
5. The product will be in A and B, except ignore B0.

Example for n=5: Multiply -9 by -13.

Action A B B1B0
1. Load registers. 000000 100110 10 C=10111
2. Add 2’s comp. of C to A. 001001
 001001 100110

3. Shift A&B. 000100 110011 11
3. Shift A&B. 000010 011001 01
2. Add C to A. 110111
 111001 011001

3. Shift A&B. 111100 101100 00
3. Shift A&B. 111110 010110 10
2. Add 2’s comp of C to A. 001001
 000111 010110

3. Shift A&B. 000011 101011

The final result is: 0001110101 = 117.”

 4

The controller for the multiplier can be implemented as a Mealy finite state machine
(FSM) with only three states as shown below in Figure 2.

Figure 2. State Diagram for Booth Multiplier

In the reset state, S1, the controller waits for the Start signal. When the controller receives
the Start signal, it should generate the Load signal to load registers B and C, clear bit B0
and register A, and go into state S2. Note that this is a synchronous state machine so all
state transitions must be synchronized to the system clock. In state S2, the controller will
do the following:

• If B1B0 = 00 or 11, shift A and B. If the termination count has been reached, go to
S1. Otherwise, increment the count and remain in S2.

• If B1B0 = 01, add C to A and go to S3.
• If B1B0 = 10, add the 2’s complement of C to A and go to S3.

In state S3, registers A and B are shifted. If the termination count has been reached, the
controller will go to S1; otherwise it will increment the count and go back to S2.

You may have noticed that the FSM operations in each state do not exactly coincide with
the algorithm description given earlier. However, if you carefully compare the flows of
the FSM and the algorithm, you will see that the FSM accomplishes the same operations
with fewer state transitions.

Perform the following steps:

 5

1. Write the Verilog code for an 8-bit Booth multiplier (n=8). Your Verilog module
should have the following inputs and outputs:

Inputs: Clock, Resetn, Start, Multiplier (Mplier), Multiplicand (Mcand)
Outputs: Done, Product

2. Simulate your Verilog design with a test bench using the following test cases. The
numbers are in twos-complement format.

 01100110 x 00110011
 10100110 x 01100110
 01101011 x 10001110
 11001100 x 10011001
 10000000 x 10000000
 11111111 x 11111111
 00000000 x 01010101
 01111111 x 01111111

The test bench code is provided to you at the end of this write-up. Study the code so
that you understand how it works.

3. Demonstrate your simulation to your TA and have him sign a verification sheet. Print

your simulation waveforms for a single multiplication.

4. Modify your Verilog code so that your multiplier can be implemented on the Altera

DE2 board. Use switches SW15-8 to input the multiplier (Mplier), switches SW7-0 to
input the multiplicand (Mcand), and SW17 to generate the Start signal. Use
pushbutton switches KEY1-0 for the Clock and Resetn signals. Display the hex value
of Mplier on HEX7-6, the hex value of Mcand on HEX5-4 and the hex value of
Product on HEX3-0. You can also use the LEDs (LEDR and LEDG) to display
signals such as Done, Start, Resetn, and Clock.

5. Synthesize your multiplier circuit and verify that it compiles without errors. (Don’t

forget to import the pin assignments for the DE2 board.) Download and test your
circuit. Demonstrate your working circuit to your TA and have him sign a verification
sheet.

III. Lab Report

For your lab report, include the following:

• Lab Cover Sheet with signed TA verification for successful download of Part I,
simulation of Part II, and download of Part II.

• Complete Verilog source code for your Parts I and II.
• Simulation waveforms of your functional simulations.
• Resource report indicating how many FPGA resources were required for each the

 6

designs in Parts I and II.

IV. Grading Guidelines

• Part I demonstration 25 points
• Part II Functional Simulation 50 points
• Part II Synthesis and Download 50 points
• Lab Report 25 points

Acknowledgements:
Part I of this lab is based on the Altera Laboratory Exercise 8: Memory Blocks.
(ftp://ftp.altera.com/up/pub/Laboratory_Exercises/DE2/Digital_Logic/Verilog/lab8_Verilog.pdf)
Part II of this lab is based on problem 4.15 in Digital Systems Design Using VHDL, by
Charles Roth, PWS Publishing Company, 1998.

 7

V. Appendix – Test Bench Code

//-------------------- tb_booth.v ----------------------------------
module tb_booth;
parameter n=8; // n-bit Booth multiplier
parameter num_vectors=8;
reg Clock, Resetn, Start;
wire Done;
reg [n-1:0] Mplier, Mcand;
wire [n+n-1:0] Product;
reg [n+n-1:0] vectors [0:num_vectors-1];
integer i;

booth UUT (.Clock(Clock), .Resetn(Resetn), .Start(Start),
.Mplier(Mplier), .Mcand(Mcand), .Done(Done), .Product(Product));

initial // Clock generator
 begin
 Clock = 1'b0;
 forever #20 Clock = ~Clock; // Clock period = 40 ns
 end

initial // Test stimulus
 begin
 Resetn = 1'b0; // synchronous reset of state machine
 Start = 1'b0; // set Start to ‘false’
 #80 Resetn = 1'b1; // reset low for 2 Clock periods
 $readmemb ("testvecs", vectors); // read testvecs file
 for (i=0; i<num_vectors; i=i+1) begin
 {Mplier, Mcand} = vectors[i]; // load Mplier, Mcand
 #20 Start = 1'b1; // Start = ‘true’
 #80 Start = 1'b0; // After 2 clock cycles, reset Start
 wait (Done==1);
 wait (Done==0);
 $display("Mplier=%h, Mcand=%h, Product=%h",Mplier,Mcand,Product);
 end
 end

endmodule

// File: testvecs
//
01100110_00110011
10100110_01100110
01101011_10001110
11001100_10011001
10000000_10000000
11111111_11111111
00000000_01010101
01111111_01111111

