(CS2123 Data Structures - Fall 2019

Assignment 6: Simulating Traffic
Due 12/5/19 by 11:59pm

For this assignment you’ll be simulating traffic in city. Specifically you need to
complete “trafficSimulator.c”, “trafficSimulator.h’, “road.c”, “road.h”, “car.h”,
and “event.h”. You can change any of the other files or create new files but
you will need to also submit them. Here is brief description of the functionality
of your simulation:

1 Intersections, Cars, and Traffic Lights

Intersections and Roads

e Intersections are the vertices of your graph.

e Fach vertex is represented by a unique integer value.

- These range from 0 to size — 1 where size is the number of vertices.

e The roads connecting them are edges of graph.

e Fach directed edge is represented by a triple of integers.

- The first integer is the starting vertex.

- The second integer is the ending vertex.

- The third integer is the weight of the edge (i.e, the length of this
road).

e Cars traverse the edge based on order of arrival (i.e., no passing). You
should use an array to represents the current contents of the road. During
each time step every car with an empty space in front of it moves forward
one position. Example:

Suppose that — is an empty space on the road and the numbers represent 3
cars on the road.

After one time step only cars 1 and 2 are able to move forward. Car 3 is
blocked from moving due to car 2.

Traffic Lights and Road Length

e An intersection permits cars from its adjacent roads to pass through at
a time.



e Each road has traffic light associated with it. When the light is green, the
car on the front of the road may attempt to pass through the intersection
towards its destination.

e The times in which the light is green/red and allows traffic through is
specified in the input (we omit yellow lights for the sake of simplicity).
The light operates on a cycle and repeats the specified pattern for the
duration of the simulation. This is specified with the following three int
inputs (see also Section [4)):

- <green on> - The cycle the light turns green (light starts as red)
- <green off> - The cycle the light turns back to red
- <cycle resets> - The cycle resets goes back to 0

e The order the roads should be processed in is same as the order in which
they were added to the graph. Hint: It will be useful to store the roads
in an array based on this order.

e The length of a road also denotes the maximum number of cars which
can be on it (see Section [2 for an important addition to this).

e A car can only pass through the intersection if the next road on its
shortest path has an empty space on the end of its array.

Cars

e The destination of each car is an intersection.
e A car is removed from the simulator once it moves off the front of the
road at its destination.
e Cars always follow a shortest path to their destination.
- Note that this shortest path is based on the lengths of the roads and
not on how many cars are currently on the roads.
- You should call the graph.c function “getNextOnShortestPath” to
find the next intersection on a shortest path.
e You will want to track the number of time cycles the car took to reach its
destination in order to report your results at the end of the simulation.

2 Events

It is recommended that you store the events in a priority queue based on the
time step it is supposed to occur on.

Event - Adding Cars

e The input file will also specify time steps in which more cars should enter
the simulation.
e Print the following on the time step this event occurs:
- “CYCLE X - ADD_CAR_EVENT - Cars enqueued on road from Y



to 2”7
- X is the time step this event occured on. The road of the event is
from Y to Z.

e These cars should be added to the end of a queue associated with the
specified edge (Hint: the merge function in queue.c may come in handy
here). For each time step remove the first car in the queue and place it
at the end of the road array of the edge if possible.

Event - Printing Road Contents

e The input file will also specify time steps in which the contents of all of
your roads should be printed. See provided output for examples of what
this will look like.

e Print the following on the time step this event occurs:

- “CYCLE X - PRINT_ROADS_EVENT - Current contents of the
roads:”
- X is the time step this event occured on.

3 Output

e Once a car reaches its destination you should print the following:
- “CYCLE W - Car successfully traveled from X to Y in Z time steps.”
- W is the time step the car reached its destination. X and Y are
respectively the starting intersection and destination of this car. Z is
the number of time steps since the car was added to the simulation.

e The simulation ends once all of the cars reach their destination and there
are no more events left to process. You should print the following:

- “Average number of time steps to the reach their destination is X.”

- “Maximum number of time steps to the reach their destination is Y.”

- X is average number of time steps taken by the cars to reach their
destination. Y is maximum timesteps taken by any car to reach its
destination.

e Alternatively, if the simulation goes through a full cycle of every traffic
lights with no car being able to move then the city is in gridlock and
the simulation halts (Hint: to determine this it will helpful to track the
longest traffic light cycle as well as when a car was last able to move).

- Output “CYCLE Z - Gridlock has been detected.”
- Z is the current time step.

4 Input File Format

<# of vertices> <# of edges>



<TO: 1st vertex> <number of incoming roads>

<FROM: 1st vertex> <length> <green on> <green off> <cycle
<FROM: 2nd vertex> <length> <green on> <green off> <cycle
<FROM: last vertex> <length> <green on> <green off> <cycle
<2nd vertex> <number of incoming roads>

<FROM: 1st vertex> <length> <green on> <green off> <cycle
<FROM: 2nd vertex> <length> <green on> <green off> <cycle
<FROM: last vertex> <length> <green on> <green off> <cycle
<last vertex> <number of incoming roads>

<FROM: 1st vertex> <length> <green on> <green off> <cycle
<FROM: 2nd vertex> <length> <green on> <green off> <cycle
<FROM: last vertex> <length> <green on> <green off> <cycle
<# of "add car" commands>

//1st add car command

<"from" of starting edge>
<number of cars to add to
<dest. vertex of 1st car>

//2nd add car command

<"from" of starting edge>
<number of cars to add to
<dest. vertex of 1st car>

//last add car command

<"from" of starting edge>
<number of cars to add to
<dest. vertex of 1st car>

<"to" of starting edge> <timestep to
this edge>
<dest.

vertex of 2nd car> <dest.

<"to" of starting edge> <timestep to
this edge>

<dest. vertex of 2nd car> <dest.

<"to" of starting edge> <timestep to
this edge>

<dest. vertex of 2nd car> <dest.

<# of "print road" commands>

<cycle # to print roads on> <cycle # to print roads on>

resets>
resets>

resets>
resets>
resets>

resets>

resets>
resets>

resets>

perform "add car" on>

vertex of last car>

perform "add car" on>

vertex of last car>

perform "add car" on>

vertex of last car>

<cycle # to print roads on>



5 Simulation

Below is the order of operations that your program should go through for each
time step:

e Dequeue and execute any and all events associated with the current time
step.

e For each road, attempt to move the first car on it through the intersection
and to the end of the next road on its shortest path. Cars that have
reached their destination intersection are removed from the simulation.

e For each road, cars which had empty spaces in front of them at the start
of this time step move forward one space.

e For each road, Attempt to move a car from the add car queue for that
road onto the last position on the road.

Repeat the above until all events have finished and either all cars have reached
their destination or gridlock has occured.

6 Deliverables:

Your solution should be submitted as “trafficSimulator.c”, “trafficSimulator.h’,
“road.c”, “road.h”, “car.h”, and “event.h”. Also include any other files you’ve
created to solve the problem (including possibly a new “makefile”).

Upload these file to Blackboard under Assignment 6. Do not zip your files.

To receive full credit, your code must compile and execute. You should use
valgrind to ensure that you do not have any memory leaks.

Remember:

The solutions you submit should be the work of only you. Cheating
will be reported to UTSA’s office of Student Conduct and Commu-
nity Standards. Both the copier and copiee will be held responsible.



	Intersections, Cars, and Traffic Lights
	Events
	Output
	Input File Format
	Simulation
	Deliverables:

