
ASP Challenge Problem:

Automated Warehouse Scenario

Martin Gebser
University of Klagenfurt, Graz University of Technology, University of Potsdam

Philipp Obermeier
University of Potsdam

1 Problem Description

We consider an automated warehouse scenario in which robots deliver prod-
ucts to picking stations to fulfill orders. A warehouse is represented as a
rectangular grid, and the robots can move between horizontally or vertically
adjacent cells. To fulfill given orders, robots have to carry shelves with the
required products to matching picking stations. The robots are flat, can
move underneath shelves and pick them up. However, a robot that carries
a shelf does not fit under another shelf anymore, so that shelves may need
to be moved out of the way first. The overall goal is to fulfill all orders in as
little time as possible, where time is counted in steps and each robot may
(but does not have to) perform one action per time step. While robots move
around, pick up and put down shelves, deliver products or remain idle, there
must not be collisions, i.e., no robot may move into or switch its cell with
another one from one step to the next. Finally, grid cells can be designated
as highways, and no shelves may be put down at such cells.

2 Input Description

The input consists of facts of the following form, which specify the objects
in a warehouse as well as the orders to fulfill:

• init(object(node,’n’),value(at,pair(’x’,’y’))).

The ground term ’n’ labels a grid cell at the coordinates given by
positive integers ’x’ and ’y’. Taking such facts together, the integers
for ’x’ and ’y’ each start at 1 and specify a rectangular grid without
holes.

• init(object(highway,’h’),value(at,pair(’x’,’y’))).

The ground term ’h’ labels a highway cell at the coordinates ’x’ and
’y’, where a corresponding fact of the first form exists and specifies
the grid cell as such.

• init(object(pickingStation,’p’),value(at,pair(’x’,’y’))).

The ground term ’p’ labels a picking station at the cell with coordi-
nates ’x’ and ’y’, where a corresponding fact of the first form exists
and specifies the grid cell as such.

1



• init(object(robot,’r’),value(at,pair(’x’,’y’))).

The ground term ’r’ labels a robot, initially located at the cell with
coordinates ’x’ and ’y’, where a corresponding fact of the first form
exists and specifies the grid cell as such.

• init(object(shelf,’s’),value(at,pair(’x’,’y’))).

The ground term ’s’ labels a shelf, initially located at the cell with
coordinates ’x’ and ’y’, where a corresponding fact of the first form
exists and specifies the grid cell as such.

• init(object(product,’i’),value(on,pair(’s’,’u’))).

The ground term ’i’ labels a product, of which a positive integer ’u’
many units are initially stored on shelf ’s’, where a corresponding
fact of the previous form exists and specifies an initial cell for the
shelf. Moreover, the number ’u’ of units is unique for each product
’i’ and shelf ’s’, i.e., there is not more than one fact referring to the
same product and shelf.

• init(object(order,’o’),value(line,pair(’i’,’u’))).

The ground term ’o’ labels an order, including a positive integer ’u’
many units of product ’i’, where the number ’u’ of units is unique
for each order ’o’ and product ’i’, i.e., there is not more than one
fact referring to the same order and product.

• init(object(order,’o’),value(pickingStation,’p’)).

The ground term ’o’ labels an order, whose included products ought
to be delivered to picking station ’p’. There is exactly one fact of this
kind per order ’o’ occurring in facts of the previous form, and a fact
specifying the cell of picking station ’p’ exists as well.

Instances are such that the initial location of a robot or shelf is unique, and
no shelf is initially carried by any robot nor located at any cell designated
as highway. Moreover, the sum of units of a product ’i’ included in orders
does not exceed the sum of units of ’i’ stored on shelves, so that instances
of interest are satisfiable, provided enough time steps (as well as robots and
grid space) to carry shelves to picking stations.

3 Output Description

A solution consists of the actions of a plan to fulfill all orders. That is,
for each product included in an order, robots have to deliver exactly the
required number of units, where the delivery can take place in several parts
(if multiple units of the same product are included in an order). Actions can
be performed at time steps ’t’ represented by positive integers starting at 1.
Each robot (specified by an instance) may, but does not have to, perform

2



one action per time step, and further conditions are described along with
the form of atoms for actions in the following:

• occurs(object(robot,’r’),move(’dx’,’dy’),’t’).

At time step ’t’, the robot labeled ’r’ moves from its cell with the
coordinates ’x’ and ’y’, which hosts the robot at time step ’t’-1, to
the horizontally or vertically adjacent cell with coordinates ’x’+’dx’

and ’y’+’dy’, where (’dx’, ’dy’) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}.
The coordinates ’x’+’dx’ and ’y’+’dy’ must refer to a cell be-
longing to the grid, and no other robot than ’r’ must be located
at this cell at time step ’t’. In case robot ’r’ carries a shelf ’s’,
also no other shelf than ’s’ must be located at the cell with coordi-
nates ’x’+’dx’ and ’y’+’dy’ at time step ’t’. Moreover, for robots
’r1’ and ’r2’ at cells with the coordinates ’x’ and ’y’ or ’x’+’dx’

and ’y’+’dy’, respectively, at time step ’t’-1, the atom of the form
occurs(object(robot,’r1’),move(’dx’,’dy’),’t’) and the atom
occurs(object(robot,’r2’),move(-’dx’,-’dy’),’t’) must not jo-
intly hold, i.e., two robots cannot switch their cells from one step to
the next.

• occurs(object(robot,’r’),pickup,’t’).

At time step ’t’, the robot labeled ’r’ picks up the shelf located at
its cell with the coordinates ’x’ and ’y’, which hosts the robot at
time step ’t’-1. In fact, some shelf must be located at the cell hosting
’r’ at time step ’t’-1, and robot ’r’ must not yet carry this shelf.

• occurs(object(robot,’r’),deliver(’o’,’i’,’u’),’t’).

At time step ’t’, the robot labeled ’r’ delivers a positive integer ’u’
many units of product ’i’, included in order ’o’. The cell hosting
’r’ at time step ’t’-1 must be the cell of the picking station of order
’o’. Moreover, robot ’r’ must carry some shelf on which at least ’u’
many units of product ’i’ are stored at time step ’t’-1, and at least
’u’ many units of product ’i’ must be included in ’o’ and yet be
undelivered. In fact, the quantity of product ’i’ stored on the shelf
carried by ’r’ and the number of units of ’i’ included in order ’o’

are both reduced by ’u’ at time step ’t’, and neither of the resulting
quantities may be negative.

• occurs(object(robot,’r’),putdown,’t’).

At time step ’t’, the robot labeled ’r’ puts down the shelf it carries
at time step ’t’-1. Some shelf carried by robot ’r’ at time step ’t’-1
must exist, and the cell hosting ’r’ at time step ’t’-1 must not be
designated as highway.

The greatest time step ’t’ occurring within actions of a plan constitutes
the makespan of the plan. This makespan is subject to minimization, and

3



a plan is considered better than another if its makespan is smaller. Clearly,
a plan needs to be a valid solution in the first place, i.e., all its actions have
to executable and all orders must be fulfilled by the plan.

4 Example

The facts in Figure 1 specify a 4x4 grid with highways along two of the grid
edges. Moreover, cells of the grid host two picking stations, six shelves and
two robots. Four different products are stored on the shelves, in particular
quantities. The products are subject to three orders: the first consisting of
one unit of product 1 and four units of product 3, the second of one unit of
product 2, and the third of one unit of product 4. Products in the first order
ought to be delivered to the first picking station, and those in the other two
orders to the second picking station.

A plan, which is optimal in terms of makespan, is given by the atoms
in Figure 2, specifying robots’ actions at time steps from 1 to 13. In a
nutshell, robot 2 first carries shelf 6 to the picking station of the first order
and delivers four units of product 3. The first order gets then fulfilled
by robot 1, who carries shelf 3 to the same picking station and delivers
one unit of product 1. In the sequel, both robots proceed by putting the
carried shelves down at different cells and moving towards the second picking
station, where products of the other two orders have to be delivered to. The
third order gets fulfilled by robot 2, delivering one unit of product 4 from
shelf 5. Finally, robot 1 carries shelf 4 to the second picking station and
delivers one unit of product 2 to fulfill the second order.

Figure 3 visualizes the plan represented by the atoms given in Figure 2,
where the displayed steps differ regarding the cells of robots, and actions
leading to a particular grid configuration are given on the right-hand side.
The configurations at steps 3/4, 5/6 and 12/13 are shown in one image each,
as no moves are made at steps 4, 6 and 13. Observe that each of the two
robots performs at most one action per time step, where robot 1 remains
idle at step 3 and robot 2 at step 13. Moreover, the moves made by the
robots are collision-free, i.e., neither do distinct robots or shelves share the
same cell at any step nor do robots switch their (adjacent) cells from one
step to the next. Also note that the second robot is at a highway cell at
step 13, so that putting down shelf 5 would not be admitted.

4



init(object(node ,1),value(at,pair (1 ,1))).

init(object(node ,2),value(at,pair (2 ,1))).

init(object(node ,3),value(at,pair (3 ,1))).

init(object(node ,4),value(at,pair (4 ,1))).

init(object(node ,5),value(at,pair (1 ,2))).

init(object(node ,6),value(at,pair (2 ,2))).

init(object(node ,7),value(at,pair (3 ,2))).

init(object(node ,8),value(at,pair (4 ,2))).

init(object(node ,9),value(at,pair (1 ,3))).

init(object(node ,10), value(at,pair (2 ,3))).

init(object(node ,11), value(at,pair (3 ,3))).

init(object(node ,12), value(at,pair (4 ,3))).

init(object(node ,13), value(at,pair (1 ,4))).

init(object(node ,14), value(at,pair (2 ,4))).

init(object(node ,15), value(at,pair (3 ,4))).

init(object(node ,16), value(at,pair (4 ,4))).

init(object(highway ,4),value(at,pair (4 ,1))).

init(object(highway ,8),value(at,pair (4 ,2))).

init(object(highway ,12), value(at,pair (4 ,3))).

init(object(highway ,13), value(at,pair (1 ,4))).

init(object(highway ,14), value(at,pair (2 ,4))).

init(object(highway ,15), value(at,pair (3 ,4))).

init(object(highway ,16), value(at,pair (4 ,4))).

init(object(pickingStation ,1),value(at,pair (1 ,3))).

init(object(pickingStation ,2),value(at,pair (3 ,1))).

init(object(robot ,1),value(at,pair (4 ,3))).

init(object(robot ,2),value(at,pair (2 ,2))).

init(object(shelf ,1),value(at,pair (3 ,3))).

init(object(shelf ,2),value(at,pair (2 ,1))).

init(object(shelf ,3),value(at,pair (2 ,3))).

init(object(shelf ,4),value(at,pair (2 ,2))).

init(object(shelf ,5),value(at,pair (3 ,2))).

init(object(shelf ,6),value(at,pair (1 ,2))).

init(object(product ,1),value(on,pair (3 ,1))).

init(object(product ,2),value(on,pair (4 ,1))).

init(object(product ,3),value(on,pair (6 ,4))).

init(object(product ,4),value(on,pair (5 ,1))).

init(object(product ,4),value(on,pair (6 ,1))).

init(object(order ,1),value(pickingStation ,1)).

init(object(order ,1),value(line ,pair (1 ,1))).

init(object(order ,1),value(line ,pair (3 ,4))).

init(object(order ,2),value(pickingStation ,2)).

init(object(order ,2),value(line ,pair (2 ,1))).

init(object(order ,3),value(pickingStation ,2)).

init(object(order ,3),value(line ,pair (4 ,1))).

Figure 1: Representation of a 4x4 grid with 2 robots, 6 shelves and 3 orders

5



occurs(object(robot ,1),move (-1,0),1).

occurs(object(robot ,2),move (-1,0),1).

occurs(object(robot ,1),move (-1,0),2).

occurs(object(robot ,2),pickup ,2).

occurs(object(robot ,2),move (0 ,1) ,3).

occurs(object(robot ,1),pickup ,4).

occurs(object(robot ,2), deliver (1,3,4),4).

occurs(object(robot ,1),move (-1,0),5).

occurs(object(robot ,2),move (0,-1),5).

occurs(object(robot ,1), deliver (1,1,1),6).

occurs(object(robot ,2),putdown ,6).

occurs(object(robot ,1),putdown ,7).

occurs(object(robot ,2),move (1 ,0) ,7).

occurs(object(robot ,1),move (1 ,0) ,8).

occurs(object(robot ,2),move (1 ,0) ,8).

occurs(object(robot ,1),move (0,-1),9).

occurs(object(robot ,2),pickup ,9).

occurs(object(robot ,1),pickup ,10).

occurs(object(robot ,2),move (0,-1),10).

occurs(object(robot ,1),move (1 ,0) ,11).

occurs(object(robot ,2), deliver (3 ,4,1),11).

occurs(object(robot ,1),move (0,-1),12).

occurs(object(robot ,2),move (1 ,0) ,12).

occurs(object(robot ,1), deliver (2 ,2,1),13).

Figure 2: Atoms representing an optimal plan for the instance in Figure 1

5 Scoring Schema

Given a solver s and an instance i, the score of s on the instance i, denotes
as score(s, i), is computed as follows:

• score(s, i) = 1.5 if s proves the optimality of the solution

• score(s, i) = 0 if s found no solution

• score(s, i) = cost(sbest ,i)+1
cost(s,i)+1

where cost(s, i) is the cost of the solution printed by the solver s on the
instance i and cost(sbest , i) is the best cost printed on the instance i. The
score is rounded off to three decimal digits. The overall score of a solver s is
computed as the sum of the scores of s for each instance i. The solver with
the maximum score is the winner.

Example. Let s1, s2, s3 and s4 be solvers and let i be an instance. Assume
the following costs:

cost(s1, i) = 100 (opt) cost(s2, i) = 100 cost(s3, i) = 200 cost(s4, i) = 400

Then, their scores are the following:

score(s1, i) = 1.5 score(s2, i) = 1 score(s3, i) = 0.502 score(s4, i) = 0.252

6



Step 0:

Step 1: Actions: occurs(object(robot ,1),move (-1,0),1).

occurs(object(robot ,2),move (-1,0),1).

Step 2: Actions: occurs(object(robot ,1),move (-1,0),2).

occurs(object(robot ,2),pickup ,2).

Step 3/4: Actions: occurs(object(robot ,2),move (0 ,1) ,3).

occurs(object(robot ,1),pickup ,4).

occurs(object(robot ,2), deliver (1,3,4),4).

Step 5/6: Actions: occurs(object(robot ,1),move (-1,0),5).

occurs(object(robot ,2),move (0,-1),5).

occurs(object(robot ,1), deliver (1,1,1),6).

occurs(object(robot ,2),putdown ,6).

Step 7: Actions: occurs(object(robot ,1),putdown ,7).

occurs(object(robot ,2),move (1 ,0) ,7).

Step 8: Actions: occurs(object(robot ,1),move (1 ,0) ,8).

occurs(object(robot ,2),move (1 ,0) ,8).

Step 9: Actions: occurs(object(robot ,1),move (0,-1),9).

occurs(object(robot ,2),pickup ,9).

Step 10: Actions:
occurs(object(robot ,1),pickup ,10).

occurs(object(robot ,2),move (0,-1),10).

Step 11: Actions: occurs(object(robot ,1),move (1 ,0) ,11).

occurs(object(robot ,2), deliver (3 ,4,1),11).

Step 12/13: Actions: occurs(object(robot ,1),move (0,-1),12).

occurs(object(robot ,2),move (1 ,0) ,12).

occurs(object(robot ,1), deliver (2 ,2,1),13).

Figure 3: Stepwise visual representation of the optimal plan given in Figure 2

7


