PROJECT 5 - NETWORKING CS 2200 - SYSTEMS AND NETWORKS Spring 2019

1 Introduction

This project will expose you to each layer in the network stack and its respective purpose. In particular, you
will “upgrade” the transport layer of a simulated network to make it more reliable.

As part of completing this project, you will:
e further explore the use of threads in an operating system, especially the network implementation.
e demonstrate how messages are segmented into packets and how they are reassembled.
e understand why a checksum is needed and when it is used.

e understand and implement the stop-and-wait protocol with ACKnowledgements, Negative (NACK)
Acknowledgements, and retransmissions.

For a description of the Stop-and-Wait Protocol, read Section 13.6.1 in your textbook.

2 Requirements

As you work through this project, you will be completing various portions of code in C. There are two files
you will need to modify:

e rtp.c: the main RTP protocol implementation
e rtp.h: to add any necessary fields to the rtp_connection_t struct

As you should strive for any programming assignment, we expect quality code. In particular, your code must
meet the following requirements:

e The code must not generate any compiler warnings

e The code must not print extraneous output by default (i.e. any debug printfs must be disabled by
default)

e The code must be reasonably robust and free of memory leaks

Code that does not meet these requirements may lose points.



PROJECT 5 - NETWORKING CS 2200 - SYSTEMS AND NETWORKS Spring 2019

3

The Protocol Stack

We have provided you with code that implements the network protocol:

4

Application Layer } client.c
Transport Layer } rtp.c
Network Layer } network.o

Data Link Layer

Physical Layer

Figure 1: The Protocol Stack

For the purpose of this project, the data link layer and the physical layer are both implemented by the
operating system and the underlying network hardware.

We have implemented our own network layer and provided it to you through the files network.h and
network.c. You should use the provided functions from those files to access the network layer.

The transport layer uses the services of the network layer to provide a specialized protocol to the
application. The transport layer typically provides TCP or UDP services to the application using
the IP services provided by the network layer. For this project, you will be writing your own
transport layer.

The application layer represents the end user application. The application simply makes the appro-
priate API calls to connect to remote hosts, send and receive messages, and disconnect from remote
hosts.

Code Walkthrough

Here, we will briefly describe the code provided for this project. It is important that you study and understand
the code given to you. The following diagram displays the interactions between various parts of the code:



PROJECT 5 - NETWORKING

CS 2200 - SYSTEMS AND NETWORKS Spring 2019

Reliable Transport Protocol Interaction Picture

Callz to send a
MeEssage

Application Layer

Callzto get 5
recieved message

rtp_send() - stores the
message to send,
signals 5 and returns

Store Messag
to send

Send Message Queue

Retrieve
MEsSage

S will break the message S
up into p packets and
zends

/

ntp_recw() - waits
for a completed
Message

Retrieves completed
MESSayes

Received Message
Queue

Transport Layer
(rtp.c)

Completed
MESSayes

R F: reazembles the RTP
packet into & message
/A Sends NACK o ACK

Sends MACK or ACK
packet

f

7

Packetized
messadge packets

net_send_packet() ‘

Metwark makes an
upcall with the RTP
packet

net_recy_packet() ‘

Internal
Facket
Handling

F

Metweark Packets are
reciewed

Network Layer {network.h)

zend on the netwark

RTP packets are\\

Unreliable
Network

Some DATA packets
will get corrupted

The client program takes two arguments. The first argument is the server it should connect to (such as
localhost), and the second argument is the port it should connect to (such as 4000). Thus, the client can be

run as follows:

$ ./rtp-client localhost 4000

4.1 High-level Logic

The client.c program represents the application layer.

It uses the services provided by the transport

layer (rtp.c). It begins by connecting to the remote host. Look at the rtp_connect connection in rtp.c. It
simply uses the services provided by the network layer to connect to the remote host. Next, the rtp_connect



PROJECT 5 - NETWORKING CS 2200 - SYSTEMS AND NETWORKS Spring 2019

function initializes its rtp_connection structure, initializes its send and receive queue, initializes its mutexes,
starts its threads, and returns the rtp_connection structure.

Next, the client program sends a message to the remote host using rtp_send message(). Sending the
message could take quite some time if the network connection is slow (imagine sending a 5MB file over a
56k modem). Thus, the rtp_send message() message makes a copy of the information to send, places the
message into a send queue, and returns so that the application can continue to do other things. A separate
thread, the rtp_send_thread actually sends the data across the network. It waits for a message to be placed
into the send queue, then extracts that message from the queue and sends it.

Next, the client program receives a message from the network. What happens if a message isn’t available or
the entire message has not yet been received? The rtp_receive message() function blocks until a message
can be pulled from the receive queue. The rtp_recv_thread actually receives packets from the network and
reassembles the packets into messages. Once it receives a message, it places the message into the receive
queue so that rtp_receive message can extract it and return it to the application layer.

The client program continues to send and receive messages until it is finished. Last, the client program calls
rtp_disconnect () to terminate the connection with the remote host. This function changes the state of the
connection so that other threads will know that this connection is dead. The rtp_disconnect() function
then calls net_disconnect (), signals the other threads, waits for the threads to finish, empties the queues,
frees allocated space, and returns.

4.2 Packets and Types

For the purposes of this project, there are four packet types:
e DATA - a data packet that contains part of a message in its payload.
e LAST DATA - just like a data packet, but also signifies that it is the last packet in a message.
e ACK - acknowledges the receipt of the last packet
e NACK - a negative acknowledgement stating that the last packet received was corrupted.

The packet format is defined in network.h. Each packet has a payload, which can be up to MAX_PAYLOAD_LENGTH
bytes, a payload_length indicator, type field, and a checksum.

5 Part I: Segmentation of Data

When data is sent over a network, the data is chopped up into one or more parts and sent inside packets.
A packet contains information that describes the message such as the destination of the data, the source of
the data, and the data itself! The data being sent over the network is referred to as the 'payload’. Look in
network.h; what other fields does our network packet carry? Think about why each field is needed. How
much payload data can we fit into each packet? (Note: as with many things in this project, the packet data
structure is simplified).

(Part A) Open rtp.c and find the packetize function. Complete this function. Its purpose is to turn a
message into an array of packets. It should:

1. Allocate an array of packets big enough to carry all of the data.

2. Populate all the fields of the packet including the payload. Remember, The last packet should be
a LAST DATA packet. All other packets should be DATA packets. THIS IS IMPORTANT. The server
checks for this, and it will disconnect you if they are not filled in correctly. If you neglect the LAST_DATA
packet, your program will hang forever waiting for a response from the server, because it is waiting on
you forever to send a terminating packet.



PROJECT 5 - NETWORKING CS 2200 - SYSTEMS AND NETWORKS Spring 2019

3. The count variable points to an integer. Update this integer setting it equal to the length of the array
you are returning.

4. Return the array of packets.

Hint: Remember that this is integer division. If length % MAX_PAYLOAD_LENGTH = O this is a special case
that should be handled.

There are several other parts of the source code that say FIX ME. The code to be inserted in these parts of
the program will simply provide additional functionality but are not necessary at this time. We will return
to these parts of the code in Part II

6 Part II: When Things Go Wrong

In the stop-and-wait protocol, the sending thread does the following things:

1. Sends one packet at a time.

2. After each packet, wait for an ACK or a NACK to be received.

3. If a NACK is received, resend the last packet. Otherwise, send the next packet.
The receiving thread should:

1. Compute the checksum for each packet payload upon arrival.

2. If the checksum does not match the checksum reported in the packet header, send a NACK. If it does
match, send an ACK.

(Part A) Open rtp.c and find the checksum function. Complete this function. Simply sum the ASCII
values of each character in the buffer and return the sum. This is how the server computes the checksum
and the server and client must compute the checksum the same way.

(Part B) Open rtp.c and find the rtp_recv_thread function. If the packet is a DATA packet, the payload
is added to the current buffer. Modify the implementation so that the data is only added to the buffer if
the checksum of the data matches the checksum in the packet header. Next, implement the code that will
signal the sending thread that a NACK or ACK has been received. You will also need to determine a way
to tell the sending thread whether a negative or positive acknowledgement was received. (Hint: it’s ok to
add fields to the rtp_connection_t data structure).

(Part C) Open rtp.c and find the rtp_send_thread function. Find the line that says FIX ME. At this
point, you should wait to be signaled by the receiving thread that a NACK or ACK has been received. Once
notified, take the appropriate action. You should NOT call net_receive_packet in the send thread. The
receiving thread is responsible for receiving packets.

7 Running the Project

To compile all of the code, use the following command:

$ make

To run the server on linux, use the following command to run the server:
$ python rtp-server -p [port number] [-c corruption_rate]
Regardless of operating system, make sure that python is bound to python 2. The server will not run on

python 3! Your client should work with an UNMODIFIED version of the server. For example, if you wanted
to run a server on port 8080 with a corruption rate of 99%, you would execute the following command:



PROJECT 5 - NETWORKING CS 2200 - SYSTEMS AND NETWORKS Spring 2019

$ python rtp-server.py -p 8080 -c .99
If you wanted to run a client that would send messages to this server, you would then execute the following
command (in a different terminal):

$ ./rtp-client 127.0.0.1 8080

The server will take the client’s messages and reverse the order of the characters. The server will be printing
out debug statements in order for you to understand what it is doing.

8 Short Answer

Give your answers to the following questions in the provided answers.txt file:

A. How does the protocol implemented in this project ensure that the entirety of a message is received by
the other end, even if packets are lost?

B. What is the benefit of dividing a message over multiple packets rather than sending it as a single
packet?

C. How might you improve the protocol implemented in this project in order to finish sending messages
more quickly? (Note: You implemented a transport layer protocol in this project. You cannot suggest
an improvement to a different layer, such as improving the bitrate.)

9 Deliverables

Type make submit to generate a tarball containing all the files needed for submission.
This tarball should contain:

e src/client.c - Code for the client program

e src/network.c - Code for the network layer

e src/network.h - Header file for the network layer

e src/queue.c - Code for the queue

e src/queue.h - Header file for the queue

e src/rtp.c - Code for the transport layer

e src/rtp.h - Header file for the transport layer

e Makefile - Working one provided for you; don’t break it

e answers.txt - Your answers to the short answer questions

Always re-download your assignment from Canvas after submitting to ensure that all necessary
files were properly uploaded. If what we download does not work, you will get a 0 regardless
of what is on your machine.



	Introduction
	Requirements
	The Protocol Stack
	Code Walkthrough
	High-level Logic
	Packets and Types

	Part I: Segmentation of Data
	Part II: When Things Go Wrong
	Running the Project
	Short Answer
	Deliverables

