
Project 4 CS 2200 - Systems and Networks Spring 2019

1 Overview

In this project, you will implement a multiprocessor operating system simulator using a popular userspace
threading library for linux called pthreads. The framework for the multithreaded OS simulator is nearly
complete, but missing one critical component: the CPU scheduler! Your task is to implement the CPU
scheduler, using three different scheduling algorithms.

Note: Make sure that multiple CPU cores are enabled in your virtual machine, otherwise you
will receive incorrect results. See the TAs if you need help.

If you are using the CS 2200 Vagrant box, the number of cores should default to 2. You can run nproc

--all to see how many cores are available to your VM.

We have provided you with source files that constitute the framework for your simulator. You will only need
to modify answers.txt and student.c. However, just because you are only modifying two files doesn’t
mean that you should ignore the other ones - there is helpful information in the other files. Information
about using the pthreads library is given in Problem 0. We have provided you these files:

1. Makefile - Working one provided for you; do not modify.

2. os-sim.c - Code for the operating system simulator which calls your CPU scheduler.

3. os-sim.h - Header file for the simulator.

4. process.c - Descriptions of the simulated processes.

5. process.h - Header file for the process data.

6. student.c - This file contains stub functions for your CPU scheduler.

7. student.h - Header file for your code to interface with the OS simulator.

1.1 Scheduling Algorithms

For your simulator, you will implement the following three CPU scheduling algorithms:

1. First In, First Out (FIFO) - Runnable processes are kept in a ready queue. FIFO is non-preemptive;
once a process begins running on a CPU, it will continue running until it either completes or blocks
for I/O.

2. Round-Robin - Similar to FIFO, except preemptive. Each process is assigned a timeslice when it is
scheduled. At the end of the timeslice, if the process is still running, the process is preempted, and
moved to the tail of the ready queue.

3. Priority with Preemtion - The process with the highest priority in its burst always gets the CPU.
Lower priority processes must be pre-empted if a process that has a higher priority becomes runnable.

1.2 Process States

In our OS simulation, there are five possible states for a process, which are listed in the process state t enum
in os-sim.h:

1. NEW - The process is being created, and has not yet begun executing.

2. READY - The process is ready to execute, and is waiting to be scheduled on a CPU.

3. RUNNING - The process is currently executing on a CPU.

4. WAITING - The process has temporarily stopped executing, and is waiting on an I/O request to complete.

5. TERMINATED - The process has completed.



Project 4 CS 2200 - Systems and Networks Spring 2019

There is a field named state in the PCB, which must be updated with the current state of the process. The
simulator will use this field to collect statistics.

Figure 1: Process States

1.3 The Ready Queue

On most systems, there are a large number of processes, but only one or two CPUs on which to execute
them. When there are more processes ready to execute than CPUs, processes must wait in the READY state
until a CPU becomes available. To keep track of the processes waiting to execute, we keep a ready queue of
the processes in the READY state

Since the ready queue is accessed by multiple processors, which may add and remove processes from the
ready queue, the ready queue must be protected by some form of synchronization–for this project, you will
use a mutex lock. The ready queue SHOULD use a different mutex than the current mutex.

1.4 Scheduling Processes

schedule() is the core function of the CPU scheduler. It is invoked whenever a CPU becomes available
for running a process. schedule() must search the ready queue, select a runnable process, and call the
context switch() function to switch the process onto the CPU.

There is a special process, the idle process, which is scheduled whenever there are no processes in the READY

state.

1.5 CPU Scheduler Invocation

There are four events which will cause the simulator to invoke schedule():

1. yield() - A process completes its CPU operations and yields the processor to perform an I/O request.

2. wake up() - A process that previously yielded completes its I/O request, and is ready to perform CPU
operations. wake up() is also called when a process in the NEW state becomes runnable.

3. preempt() - When using a Round-Robin or Priority scheduling algorithm, a CPU-bound process may
be preempted before it completes its CPU operations.

4. terminate() - A process exits or is killed.



Project 4 CS 2200 - Systems and Networks Spring 2019

The CPU scheduler also contains one other important function: idle(). idle() contains the code that gets
by the idle process. In the real world, the idle process puts the processor in a low-power mode and waits.
For our OS simulation, you will use a pthread condition variable to block the thread until a process enters
the ready queue.

1.6 The Simulator

We will use pthreads to simulate an operating system on a multiprocessor computer. We will use one thread
per CPU and one thread as a ’supervisor’ for our simulation. The CPU threads will simulate the currently-
running processes on each CPU, and the supervisor thread will print output and dispatch events to the CPU
threads.

Since the code you write will be called from multiple threads, the CPU scheduler you write must be thread-
safe! This means that all data structures you use, including your ready queue, must be protected using
mutexes.

The number of CPUs is specified as a command-line parameter to the simulator. For this project, you will
be performing experiments with 1, 2, and 4 CPU simulations.

Also, for demonstration purposes, the simulator executes much slower than a real system would. In the real
world, a CPU burst might range from one to a few hundred milliseconds, whereas in this simulator, they
range from 0.2 to 2.0 seconds.

Figure 2: Simulator Function Calls

Compile and run the simulator with ./os-sim 2. After a few seconds, hit Control-C to exit. You will see
the output below:



Project 4 CS 2200 - Systems and Networks Spring 2019

Figure 3: Sample Output

The simulator generates a Gantt Chart, showing the current state of the OS at every 100ms interval. The
leftmost column shows the current time, in seconds. The next three columns show the number of Running,
Ready, and Waiting processes, respectively. The next two columns show the process currently running on
each CPU. The rightmost column shows the processes which are currently in the I/O queue, with the head
of the queue on the left and the tail of the queue on the right.

As you can see, nothing is executing. This is because we have no CPU scheduler to select processes to
execute! Once you complete Problem 1 and implement a basic FIFO scheduler, you will see the processes
executing on the CPUs.

2 Problem 1: FIFO Scheduler

NOTE: Part B of each part requires you to put your answer down in answers.txt

Part A. Implement the CPU scheduler using the FIFO scheduling algorithm. You may do this however you
like, however, we suggest the following:

• Implement a thread-safe ready queue using a linked list. A linked list will allow you to reuse this ready
queue for the Round-Robin and Priority scheduling algorithms.

• Implement the yield(), wake up(), and terminate() handlers. preempt() is not necessary for this
stage of the project. See the overview and the comments in the code for the proper behavior of these
events.

• Implement idle(). idle() must wait on a condition variable that is signalled whenever a process is
added to the ready queue.

• Implement schedule(). schedule() should extract the first process in the ready queue, then call
context switch() to select the process to execute. If there are no runnable processes, schedule()
should call context switch() with a NULL pointer as the PCB to execute the idle process.



Project 4 CS 2200 - Systems and Networks Spring 2019

2.1 Hints

• Be sure to update the state field of the PCB. The library will read this field to generate the Running,
Ready, and Waiting columns, and to generate the statistics at the end of the simulation.

• There is a field in the PCB, next, which you may use to build linked lists of PCBs.

• Four of the five entry points into the scheduler (idle(), yield(), terminate(), and preempt())
should cause a new process to be scheduled on the CPU. In your handlers, be sure to call schedule(),
which will select a runnable process, and then call context switch(). When these four functions
return, the library will simulate the process selected by context switch().

• context switch() takes a timeslice parameter, which is used for preemptive scheduling algorithms.
Since FIFO is non-preemptive, use -1 for this parameter to give the process an infinite timeslice.

Part B. Run your OS simulation with 1, 2, and 4 CPUs. Compare the total execution time of each. Is
there a linear relationship between the number of CPUs and total execution time? Why or why not? Keep
in mind that the execution time refers to the simulated execution time.

3 Problem 2: Round-Robin Scheduler

Part A. Add Round-Robin scheduling functionality to your code. You should modify main() to add a
command line option, -r, which selects the Round-Robin scheduling algorithm, and accepts a parameter, the
length of the timeslice. For this project, timeslices are measured in tenths of seconds. E.g.:

./os-sim <# CPUs> -r 5

should run a Round-Robin scheduler with timeslices of 500 ms. While:

./os-sim <# of CPUs>

should continue to run a FIFO scheduler. You should also make sure preempt is implemented in this section
of the project.

To specify a timeslice when scheduling a process, use the timeslice parameter of context switch(). The
simulator will automatically preempt the process and call your preempt() handler if the process executes
on the CPU for the length of the timeslice without terminating or yielding for I/O.

Part B. Run your Round-Robin scheduler with timeslices of 800ms, 600ms, 400ms, and 200ms. Use only
one CPU for your tests. Compare the statistics at the end of the simulation. Show that the total waiting
time decreases with shorter timeslices. However, in a real OS, the shortest timeslice possible is usually not
the best choice. Why not?

4 Problem 3: Priority Scheduler

Part A. Add Priority scheduling to your code. Modify main() to accept the -s parameter to select the
Priority algorithm. The -r and default FIFO scheduler should continue to work.

The scheduler should use the priority field of the PCB to prioritize certain processes.

For Priority scheduling, you will need to make use of the current[] array and force preempt() function.
The current[] array should be used to keep track of the process currently executing on each CPU. Since
this array is accessed by multiple CPU threads, it must be protected by a mutex. current mutex has been
provided for you.

NOTE: A high priority is actually denoted by a low value. This means that the highest possible priority is
0.



Project 4 CS 2200 - Systems and Networks Spring 2019

You may assume for this project that no processes running have the same priority.

The force preempt() function preempts a running process before its timeslice expires. Your wake up()

handler should make use of this function to preempt a process when a process with higher priority needs a
CPU.

Part B. Students in some previous semesters implemented a Shortest Remaining Time First algorithm in
place of the Priority algorithm. Why is that a SRTF algorithm is often impossible to implement precisely
in a real operating system, and why might it be simpler to implement Priority?

Run each of the scheduling algorithms using one CPU and compare the total waiting times. Which one had
the lowest? Why?

5 Deliverables

NOTE: Each Problem has two parts (labeled A and B). The first is the actual implementation, and the
second is a question linked to the scheduling algorithm you are implementing. Make sure you complete both.

You can run make submit to automatically package your project for submission. Submit the resulting tar.gz
compressed folder on Canvas.

The archive should contain the following files:

• answers.txt- Short answers to questions from above.

• Makefile - Working one provided for you; don’t break it.

• os-sim.c - Code for the operating system simulator.

• os-sim.h - Header file for the simulator.

• process.c - Descriptions of the simulated processes.

• process.h - Header file for the process data.

• student.c - Your code for the scheduler.

• student.h - Header file for your scheduler code.

Keep your answers detailed enough to cover the question, including support from simulator results if appro-
priate. Don’t write a book; but if you’re not sure about an answer, err on the side of giving us too much
information.


	Overview
	Scheduling Algorithms
	Process States
	The Ready Queue
	Scheduling Processes
	CPU Scheduler Invocation
	The Simulator

	Problem 1: FIFO Scheduler
	Hints

	Problem 2: Round-Robin Scheduler
	Problem 3: Priority Scheduler
	Deliverables

