
Alexandria University
Faculty of Engineering
Computer and Systems Engineering
Department

CS 4E3 Computer Vision
Assigned: Thursday, April 30, 2020

Due: Thursday, May 14, 2020

Assignment # 4
Tracking Objects in Videos

1 Overview

One incredibly important aspect of human and animal vision is the ability to follow objects and
people in our view. Whether it is a tiger chasing its prey, or you trying to catch a basketball,
tracking is so integral to our everyday lives that we forget how much we rely on it. In this
assignment, you will be implementing an algorithm that will track an object in a video.

You will implement the Lucas-Kanade tracker, where two video sequences are provided: a
car on a road, and a helicopter approaching a runway (https://drive.google.com/open?id=
18BPzV7EMxIG14yqnD3sChs_I8yHf5byF). To initialize the tracker you need to define a template
by drawing a bounding box around the object to be tracked in the first frame of the video.
For each of the subsequent frames the tracker will update an affine transform that warps the
current frame so that the template in the first frame is aligned with the warped current frame.

2 Preliminaries

An image transformation or warp is an operation that acts on pixel coordinates and maps
pixel values from one place to another in an image. Translation, rotation and scaling are all
examples of warps. We will use the symbol W to denote warps. A warp function W has a set
of parameters p associated with it and maps a pixel with coordinatesx = [u, v]T to x = [u

′
, v

′
]T

with x
′
= W (x; p).

An affine transform is a warp that can include any combination of translation, anisotropic
scaling and rotations. An affine warp can be parametrized in terms of 6 parameters p =
[p1, p2, p3, p4, p5, p6]T . One of the convenient things about an affine transformation is that it
is linear; its action on a point with coordinates x = [uv]T can be described as a matrix operation:

u′

v
′

1

 = W (p)

uv
1


Where W (p) is a 3 x 3 matrix such that:

W (p) =

1 + p1 p3 p5

p2 1 + p4 p6

0 0 1



Dr. Marwan Torki Eng. Nada Osman

https://drive.google.com/open?id=18BPzV7EMxIG14yqnD3sChs_I8yHf5byF
https://drive.google.com/open?id=18BPzV7EMxIG14yqnD3sChs_I8yHf5byF

Alexandria University
Faculty of Engineering
Computer and Systems Engineering
Department

CS 4E3 Computer Vision
Assigned: Thursday, April 30, 2020

Due: Thursday, May 14, 2020

Note that for convenience when we want to refer to the warp as a function we will use
W (x; p) and when we want to refer to the matrix for an affine warp we will use W (p). Table 1
contains a summary of the variables used in this assignment.

3 Lucas-Kanade: Forward Additive Alignment

A Lucas Kanade tracker maintains a warp W (x; p) which aligns a sequence of images It to a
template T . We denote pixel locations by x, so I(x) is the pixel value at location x in image
I. For the purposes of this derivation, I and T are treated as column vectors (think of them as
unrolled image matrices). W (x; p) is the point obtained by warping x with a transform that has
parameters p. W can be any transformation that is continuous in its parameters p. Examples of
valid warp classes for W include translations (2 parameters), affine transforms (6 parameters)
and full projective transforms (8 parameters). The Lucas Kanade tracker minimizes the pixel-
wise sum of square difference between the warped image I(W (x; p)) and the template T .

In order to align an image or patch to a reference template, we seek to find the parameter
vector p that minimizes L, where:

L =
∑

x[T (x)− I(W (x; p))]2

Dr. Marwan Torki Eng. Nada Osman

Alexandria University
Faculty of Engineering
Computer and Systems Engineering
Department

CS 4E3 Computer Vision
Assigned: Thursday, April 30, 2020

Due: Thursday, May 14, 2020

In general this is a difficult non-linear optimization, but if we assume we already have a close
estimate p of the correct warp, then we can assume that a small linear change ∆p is enough to
get the best alignment. This is the forward additive form of the warp. The objective can then
be written as:

L =
∑

x[T (x)− I(W (x; p + ∆p))]2

Expanding this to the first order with Taylor Series gives us:

L ∼
∑

x[T (x)− I(W (x; p))−∆I(x)∂W
∂p

∆p]2

Where ∆I(x) = [∂I(x)
∂u

, ∂I(x)
∂v

], which is the vector containing the horizontal and vertical
gradient at pixel location x. Rearranging the Taylor expansion, it can be rewritten as a typical
least squares approximation: ∆p∗ = argmin∆p||A∆p− b||2:

∆p∗ = argmin∆p

∑
x[∆I(x)∂W

∂p
∆p− {T (x)− I(W (x; p))}]2

This can be solved with ∆p∗ = (ATA)−1AT b where:

(ATA) = H =
∑

x[∆I(x)∂W
∂p

]T [∆I(x)∂W
∂p

]

A =
∑

x[∆I(x)∂W
∂p

]

b = T (x)− I(W (x; p))

Once ∆p is computed, the best estimate warp can be updated p = p + ∆p, and the whole
procedure can be repeated again, stopping when ∆p is less than some threshold.

4 Tracker Implementation

Write a function that computes the optimal local motion from frame It to frame It+1 that min-
imizes the error L. The function takes three inputs: the current frame It, the next frame It+1,
and an (4 x 1) vector that represents a rectangle on the image frame It. The four components
of the rectangle are [x, y, w, h], where (x, y) is the top-left corner and (w, h) is the width and
height of the bounding box. The rectangle is inclusive, i.e., in includes all the four corners.

Start with the first frame provides I0, detect the object to be tracked (car/helicopter), and
draw the (4 x 1) rectangle over the detected object. Iterate over the rest of the frames and
output a tracking video of the object.

Dr. Marwan Torki Eng. Nada Osman

Alexandria University
Faculty of Engineering
Computer and Systems Engineering
Department

CS 4E3 Computer Vision
Assigned: Thursday, April 30, 2020

Due: Thursday, May 14, 2020

5 Notes

• Deliverables

– Your well-commented code.

– A video of your tracker on the car dataset (car.mp4).

– A video of your tracker on the helicopter dataset (helicopter.mp4).

• You can work in groups of 2 or 3.

Dr. Marwan Torki Eng. Nada Osman

	Overview
	Preliminaries
	Lucas-Kanade: Forward Additive Alignment
	Tracker Implementation
	Notes

