
1

Due Date
Due: 11:59 pm Saturday 2nd April 2022
Worth: 3% of the final mark

Introduction - The Bouncing Program
The aim of the assignment is to give you experience with object-oriented programming, principles of inheritance and
polymorphism. The application, as given, is a simple bouncing program designed to let different shapes move around along
various paths. Users will be able to create shapes based on the classes you will write, and to select individual existing shapes on
the panel and change their properties. This project has 3 iterations and your final program should be able achieve the following:

Shape Creation:
The user can create a new shape by clicking anywhere within the panel area of the program. The properties of the newly created
shape are based on the current values saved in the AnimationViewer class. Once created, the shape will start moving.

Selecting/deselecting shapes:
A user can select a shape by clicking anywhere on the shape. A selected shape shows all it handles. The user can change the path
type / width / height / fill colour for all selected shapes by changing the current values with the help of the tools provided at the
top of the application GUI. (Note: The shape type itself cannot be modified once a shape has been created.) Clicking on a selected
shape will deselect it.

A1 requires you to complete the first iteration of this project. You will notice that there are some graphical Java elements forming
the GUI (Graphical User Interface) of the program. The detailed knowledge about these elements will arrive later in the course.
Note that, for this assignment, the code for implementing these elements is already embedded in the program provided to you. So,
all you need to do is to complete the specific parts of this larger program. This document contains the necessary instructions for
completing these missing parts, that when implemented will activate the relevant features this application is required to produce.

The first iteration is only a TEXT based version of the program. The program simply prints the details of each shape to a
JTextArea. A1 is divided into two parts for marking purposes. You should complete 17 questions in CodeRunner (10 marks) and
complete the entire working program (5 marks). Submit the entire program to the assignment dropbox.

Note: You are strongly recommended to go back and forth between working on the program in your IDE and making CodeRunner
task submissions, so that by the end of this process you have a complete “working” Java application ready to be submitted.

Assignment Tasks

Download all basic source files from Canvas. The files included in the program are as follows:

● ShapeType.java, PathType.java, Shape.java, Rectangle.java,
● Painter.java, TextPainter.java, AnimationPanel.java and A1.java

A1 is divided into several stages for ease of completion. Please complete the assignment in order of the stages. You need to be
familiar in particular with the purpose of three methods in Shape.java, which you may wish to override in the new shape
subclasses you will create:

● draw(): This method actually draws the shape in question, using an object that is a subclass of the abstract Graphics2D
class, which is part of the Java AWT graphics package and extends the Graphics class in that package. You will need to
override this method in the subclass you create, and ensure that the respective shape is drawn properly.

● contains(): This method takes a Point parameter and is meant to return true if the Point is inside the shape and false
if it is not. Since you will be creating different shapes, you will need to override this method for each shape that has a
new outline, unless it makes sense to simply inherit it from an ancestor class with the same outline.

● getArea(): This method returns the area of a particular shape.

Download A1 Help powerpoint slide and video from Canvas. The slide explains the details about the relationship between classes
and the steps in creating those new shapes. The video demonstrates the expected behaviour of the final program.

COMPSCI 230

Assignment ONE

Computer
Science

2

CodeRunner Questions (10 marks)
Stage 1: The SquareShape Class
Define a subclass named SquareShape which represents a square. This class should create a NEW square based on the mouse-
point, the minimum value of current width and current height, current fill colour, and current moving path saved in the
AnimationViewer. What is the superclass of the SquareShape? Should you use Shape or RectangleShape as the
superclass? You should complete the following steps:

● Modify the ShapeType enum
● Define a subclass named: SquareShape

Stage 2: The OvalShape Class
Define a subclass named OvalShape which represents an oval/ellipse. This class should create a NEW oval/ellipse based on the
mouse-point, current width, current height, current fill colour, and current moving path saved in the AnimationViewer. Use the
following formula to check if the mouse point is in the ellipse or not:
dx = (2 * mx - x - x1) / w
dy = (2 * my - y - y1) / h
d = dx * dx + dy * dy
The mouse point (mx, my) is within the circle/ellipse if d is less than 1 where (x, y) is the top left corner, (x1, y1) is the
bottom right corner, w is the width of the embedded rectangle and h is the height of the embedded rectangle.

Complete the following steps:

● Modify the Painter interface and the TextPainter class
● Modify the ShapeType enum
● Define a subclass named: OvalShape

Stage 3: The TriangularShape Class & subclass
Define a subclass (of Shape) named TriangularShape which represents the superclass of 3 types of triangles, they are:
isosceles, equilateral and right angle (45-45-90). The TriangularShape contains a private Polygon(java.awt) data field
named polygon that defines the coordinates of a triangle. The TriangularShape class contains the contains() method which
takes a Point(java.awt) as a parameter and returns true if the point is located inside the triangle; false otherwise. However, the
TriangularShape should not contain the draw() and getArea() methods. The draw() and getArea() should be defined in the
subclasses as the drawing and calculation depend on the particular type of a triangle.

Complete the following steps:

● Modify the Painter interface and the TextPainter class
● Modify the ShapeType enum
● Define the TriangularShape, IsoscelesTriangle, EquilateralTriangle and Right454590Triangle

subclasses

Stage 4: Creating new shape - The AnimationViewer class
You are required to modify the createNewShape(int x, int y) method in the AnimationViewer class to create a new
shape. The method should create a new rectangle, oval or triangle shape and add the new shape to the shapes array list. The
method should use the following values in the AnimationViewer class to create a new shape:

● x and y method parameters define the point representing the top left corner of a shape.
● currentWidth and currentHeight fields are declared inside AnimationViewer class and define the dimensions of a

shape.
● marginWidth and marginHeight fields are declared inside AnimationViewer class and define the boundaries of the

bouncing area.
● currentColor field is declared inside AnimationViewer class and defines the fill colour of a shape.
● currentPathType field is declared inside AnimationViewer class and defines the moving path of a shape.
● currentShapeType field is declared inside AnimationViewer class and defines the shape type of a shape. If the

ShapeType is 'RECTANGLE', the method should add a rectangle to the array list. If it is "OVAL", the method should add
an oval to the array list. If it is "SQUARE", the method should add a square to the array list and so on.

Stage 5: The BoundaryPath class
The abstract MovingPath class contains an abstract move method which moves all shapes in the array list. The MovingPath
class is an inner class which is defined inside the Shape class. The BouncingPath is a concrete class and implements the
move() method to move shapes in a bouncing motion. Define a concrete class named BoundaryPath which contains the
move() method such that shapes are moving around the boundary of the bouncing area. The BoundaryPath should extend the
MovingPath and implement the move() method. You should complete the following steps:

● Modify the PathType enum

3

● Define an inner member subclass: BoundaryPath

Stage 6: Creating new Path - The Shape class
You are required to modify the setPath() method in the Shape class such that shapes are moving either in a bouncing path or
boundary path based on the following:

● The method should set the current path to a BouncingPath path if the PathType is "BOUNCE". The method should
create a bouncing path with delaX =1 and delaY = 2.

● The method should set the current path to a BoundaryPath path if the PathType is "BOUNDARY". The method should
create a boundary path with delaX = 5 and delaY = 5.

The Final Program (5 marks)
Complete the program. When the user clicks the “Add” button for the first time, the program should create a rectangle which
moves in the "BOUNCE" path (but not visible yet). When the user clicks the “Add” button for the second time , the program should
create a square which moves in the "BOUNDARY" path. When the user clicks the “Add” button next, the program should create an
oval which moves in the "BOUNCE" path. When the user clicks the “Add” button again, the program should create an isosceles
triangle which moves in the "BOUNDARY" path and so on.

When the user clicks the “Show” button, the program should display the details of each shape in the shapes array list.

Assessment Criteria

Complete CodeRunner A1 question submissions AND submit the entire program via the assignment dropbox
(https://adb.auckland.ac.nz/) at any time from the first submission date up until the final due date. You will receive an electronic
receipt. Submit ONE A1.zip file containing all the source files. Remember to include your name, UPI and a comment at the
beginning of each file you create or modify.

You may make more than one submission, but note that every submission that you make replaces your previous submission.
Submit ALL your files in every submission. Only your very latest submission will be marked. Please double check that you have
included all the files required to run your program in the zip file before you submit it. Your program must compile and run to gain
any marks. We recommend that you check this on the lab machines before you submit.

Marking Criteria

CR 10 marks Complete 17 questions in CR
Q1 1 Include your name, UPI and a comment at the beginning of ALL YOUR FILES.
Q2 1 Users should be able to create new shapes using the Add button
Q3 1 Users should be able to show the details of each shape using the Show button
Q4 1 Shapes are created in the correct order
Q5 1 Shapes are moving in the correct order: bouncing and boundary alternately.

ACADEMIC INTEGRITY
The purpose of this assignment is to help you develop a working understanding of some of the concepts you are taught in the
lectures. We expect that you will want to use this opportunity to be able to answer the corresponding questions in the tests and
exam. We expect that the work done on this assignment will be your own work. We expect that you will think carefully about any
problems you come across, and try to solve them yourself before you ask anyone for help. The following sources of help are not
acceptable:

● Getting another student, or other third party to instruct you on how to design classes or have them write code for you.
● Taking or obtaining an electronic copy of someone else’s work, or part thereof.
● Give a copy of your work, or part thereof, to someone else.
● Using code from past sample solutions or from online sources dedicated to this assignment.

The Computer Science department uses copy detection tools on all submissions. Submissions found to share code with those of
other people will be detected and disciplinary action will be taken. To ensure that you are not unfairly accused of cheating:

● Always do individual assignments by yourself.
● Never give any other person your code or sample solutions in your possession.
● Never put your code in a public place (e.g., Piazza, forum, your web site).
● Never leave your computer unattended. You are responsible for the security of your account.
● Ensure you always remove your USB flash drive from the computer before you log off, and keep it safe.

