

 COP4600

P1: System Calls

Prologue
You work for a top-secret shadow government organization dedicated to the rise of the Silurian overlords.

You, as a faithful member of the Lizard Legion, are part of the team charged with improving data storage

and handling, particularly tracking metadata – that is, data about data – within the organization’s computer

systems. You have been tasked to build a coded message subsystem under the guise of process logging

for kernels running in “Sky Skink”, the cloud computing system. Naturally, the Legion uses the superior

Reptilian operating system distribution.

Overview
In this project, you will implement a system call in Reptilian along with three static library functions that

allow the system call to be invoked from a C API. These custom system calls will get and set a custom

process log level that will sit atop the standard Linux kernel’s diagnostic message logging system (dmesg)

and allow processes to submit log entries along with a log level. If the log level for the message is more

severe (lower than) the current log level, the message will be added to the kernel log. Log levels and names

will correspond to those in the Linux kernel. We, as your benevolent lizard overlords, will provide a

program that exercises and demonstrates the new calls. You create a short video to demonstrate your code.

(Our masters will be most pleased.) You will submit the project via Canvas so as not to invite suspicion.

Table 1. Kernel Log Levels and Corresponding Process Log Levels

Kernel Level Name Description # Process Level Name

KERN_EMERG Emergency / Crash Imminent (no process logging) 0 PROC_OVERRIDE
KERN_ALERT Immediate Action Required 1 PROC_ALERT
KERN_CRIT Critical/Serious Failure Occurred 2 PROC_CRITICAL
KERN_ERR Error Condition Occurred 3 PROC_ERROR
KERN_WARNING Warning; recoverable, but may indicate problems 4 PROC_WARNING
KERN_NOTICE Notable, but not serious (e.g., security events) 5 PROC_NOTICE
KERN_INFO Informational (e.g. initialization / shutdown) 6 PROC_INFO
KERN_DEBUG Debug messages 7 PROC_DEBUG

NOTE: Take snapshots of your VM! You will probably brick your machine at some point during

this or other projects, and you will not want to start from scratch. No, seriously – take snapshots!

Structure
The project is broken into four main parts:

1) Create a kernel-wide process log level attribute.

2) Create system calls that allow a process to get or set the process log level of the system.

3) Create system call that allows a process to add a process log message at a defined log level.

4) Create static library functions that allow the system calls to be invoked via a C API.

 → →

Figure 1: A system call invoked from a user program

While exact implementation may vary, the library functions must match the signatures laid out in this

document, and the system calls must apply the security model properly. Logged messages have format

“$log_level_name [$executable, $pid]: $message”, e.g.:

PROC_ERR [bacon_pancakes, 21]: Life is scary & dark. That is why we must find the light.

NOTE: Your output must match the format exactly this include whitespace and semicolon location,

failure to do will result in point deductions.

System Call
The system will have a single, kernel-wide process log level which should initialize on boot in the kernel

and must be stored persistently (until shutdown / reboot). The rules for logging are as follows:

1) Any process can read (get) the process log level.

2) Any process may send a process log to the kernel.

3) Only a process running as the superuser may write (set) the process log level.

4) If a message’s log level is higher than the process log level, the message is ignored.

5) If a message’s log level is lower than or equal to the process log level, the message will be logged.

6) The system-wide a process log level should be initialized to zero (0) – i.e., override logging only.

7) Log levels can have values between 0-7 (3-bit unsigned integer). Invalid level results in call failure.

8) Any successfully logged message should be logged with the corresponding kernel log level.

9) Messages will have a maximum length of 128 characters.

System calls are called via syscall(call_num, param1, param2). To log a message, the call should

be syscall(PROC_LOG_CALL, msg, level). Call parameters are limited to no more than two!

Static Library
You will create a static library to invoke the system calls in a directory named process_log. This

include a header, process_log.h (prototypes and level symbols), and static library file named

libprocess_log.a. You will also need to provide a Makefile for the library. All sources must be

contained within the process_log directory. Please note, these filenames must match exactly!

You will create a tarred gzip file of the process_log directory with name process_log.tar.gz. When

testing, we will decompress the archive, enter the process_log directory, and build. All functions

enumerated below must be made available by including " process_log.h". See Submission for details.

Library Functions

int get_proc_log_level()
Invokes system call which reads system-wide process log level. Returns the process log level on

success, and -1 otherwise.

int set_proc_log_level(int new_level)
Invokes system call which attempts to change the system-wide process log level to new_level.

Returns new_level on success, and -1 otherwise. On failure, log level should be unchanged.

System Call Library User Program

int proc_log_message(int level, char *message)
Invokes system call to log a message for this process. If logged, the message should appear in dmesg

logs at the corresponding kernel level. Returns -1 for invalid log level (or if message is too long), and

level otherwise.

Harness Functions
In addition to the standard library functions, you will implement testing harness functions. The testing

harness functions are used to verify security of the system calls from the system library (and are

required for full credit on this assignment). We will call these functions to retrieve the information

needed to make a system call. We will then call the system call within our own program. This ensures

that no security checks are being done in the user-level library.

System call parameter retrieval data should be returned as a pointer to an int array of 2-4 values that

can be used to make the system call (which can be cast from other types). It has this format:

 { call_number, num_parameters [, parameter1] [, parameter2] }

e.g.: { 42, 2, 867, 5309 } 🡪 syscall(42, 867, 5309)

Figure 2: Harness functions can directly invoke system calls without the library functions.

These test harness elements must be implemented to test your security model:

#define PROC_LOG_CALL <number>

Definition for the system call number for proc_log_message (see System Call); should be in header.

int* retrieve_set_level_params(int new_level)
Returns an int array of 2-4 values that can be used to make the set-process-log-level system call.

int* retrieve_get_level_params()
Returns an int array of 2-4 values that can be used to make the get-process-log-level system call.

int interpret_set_level_result(int ret_value)
After making the system call, we will pass the syscall return value to this function call. It should return

set_proc_log_level’s interpretation of the system call completing with return value ret_value.

int interpret_get_level_result(int ret_value)
After making the system call, we will pass the syscall return value to this function call. It should return

get_proc_log_level’s interpretation of the system call completing with return value ret_value.

int interpret_log_message_result(int ret_value)
After making the system call, we will pass the syscall return value to this function call. It should return

proc_log_message’s interpretation of the system call completing with return value ret_value.

Note that there is no retrieve function for log_message as its system call format is defined above.

Submissions
You will submit the following at the end of this project (3 separate files):

● Report (p1.txt) in man page format on Canvas, including link to unlisted screencast video

● Kernel Patch File (p1.diff) on Canvas

● Compressed tar archive (process_log.tar.gz) for process_log library on Canvas

Report

Your report will explain how you implemented the new system call in the kernel, including what changes

were made to which files and why for each. It will describe how testing was performed and any known

bugs. The report should be created using man format saved as a .txt. The report should be no more than

500 words (about two pages in man format), cover all relevant aspects of the project, and be organized

and formatted professionally – this is not a memo!

Screencast
Students should submit a screencast (with audio) walking through the changes made to the operating

system to enable the system calls. It should include showing/demoing your changes in action (no more

than 5 minutes). Audio speed-up is prohibited. Video cannot have watermarks and must be unlisted!

Patch File
The patch file will include all changes to all files in a single patch. Applying the patches and remaking

the necessary parts of Reptilian, then rebooting and then building the test code (which we will also copy

over) should compile the test program.

Your project will be tested by applying the patch while in /usr/rep/src/reptilian-kernel:

$ git apply p1.diff
$ make && sudo make install && sudo make modules_install

Compressed Archive (process_log.tar.gz)
Your compressed tar file should have the following directory/file structure:

process_log.tar.gz
 process_log.tar

 process_log (directory)
 process_log.h
 Makefile

 (Other source files)

To build the library, we will execute these commands (from a non-kernel-source directory):

$ tar zxvf process_log.tar.gz
$ cd process_log
$ make
$ cd ..

To link against the library, we will execute this command:

$ cc -o program_name sourcefile.c -L ./process_log -lprocess_log

Please test your library build and linking before submission! If your library does not compile it will

result in zero credit (0, none, goose-egg) for the library portion of the project.

