
Assignment 1 - Specification
MTRN3500 - UNSW School of Mechanical and Manufacturing Engineering

Alexander Cunio & Jay Katupitiya

September 4, 2024

Changelog

• 09/09/24: Initial release

1 Assignment Aims

This assignment has been designed to introduce you to how you might interact with existing on-the-market hardware.
It is conducted through an experimental hardware setup we will call “the PLC System”.

By the end of the assignment you will have:

• Interacted with the hardware by writing a high-level interface.

• Found the required methods of communicating by reviewing hardware documentation provided by a manufac-
turer.

2 Assignment Problem

This assignment requires you to develop an object oriented software package for a Programmable Logic Controller
(PLC - and hence the PLC System) which in this case is used as a general purpose interface device. PLCs like
this are commonly used to control various robotic systems in the industry as they have more functionalities such as
process control loops (PID loops). They are equipped with various digital inputs and outputs (for controlling ON/OFF
systems, sensing ON/OFF signals and for communicating with encoders) as well as analogue I/O (for dealing with
amplifiers, actuators or other analogue equipment).

Twenty four of these units have been setup, along with peripheral equipment (encoders, volt meters, LEDs, motors
etc.) in the Mechatronics labs at UNSW. You are required to write the necessary software for controlling the PLC. A
header file Galil.h has been provided for you. It declares all the functions which you are required to implement. You
must create a C++ file called Galil.cpp (NOTE: The file must have this name EXACTLY) and it must contain all the
function definitions you will write. These are defined in Galil.h. You are allowed to add your own private member
functions or data, but you must not change the existing publicmember functions and data. Having completed Galil.h

and Galil.cpp you must be prepared to demonstrate the functionality of your object class by calling individual
functions where appropriate in a main function.

For testing outside of lab sessions, a simulator has been provided. This emulates the functionality of the physical
devices as a means of continuing development. Please note that the in-person assessments will run on the physical
hardware within the lab so ensure you test on these during your lab sessions.

You will be coding the assignment in Visual Studio 2022 (a C++ IDE produced by Microsoft). Most of the development
can be conducted on your own computer, so you will need the software installed. Running the assignment requires
connection to the PLC manufactured by Galil. This can be done in one of two ways, either the physical in-lab hardware
or the provided simulator. Further information on running the assignment can be found in the provided ‘Galil Use’
document (found on Moodle).

1



3 Your task

3.1 Part A: Interacting with the Galil PLC

Your task is to implement a set of functions that define a variety of means of communicating with the Galil PLC.
Communication is conducted through different commands that are provided by the manufacturer in the documentation
(Galil-RIO47142-CommandReference on moodle). You must implement the class member functions defined within
the Galil.h (in the Galil class). The functionality of each of these is described within the header file itself. These
functions each define a way to interact with the hardware, including the digital and analogue inputs and outputs and
querying the PLC.

Each function that must be completed is marked with a ‘TODO’ indicator within the header file. This implementation
should be written in a file called Galil.cpp. You must thoroughly test your implementation not only on the simulator
provided but also on the physical hardware within the lab classes (you are provided plenty of time within each lab
class to do so).

Whenever you send a command to the Galil PLC (whether physical or in the simulator) it must be sent through the
provided class EmbeddedFunctions. This has a number of functions defined within EmbeddedFunctions.h that you
should review. This provides a wrapper around Galil-provided implementations and a simulator interface.

3.2 Part B: Direct Ethernet communication with hardware

Throughout part A you have interracted with the EmbeddedFunctions wrapper class in order to communicate with
the Galil PLC. This functions to allow the computer to communicate through TCP/IP communication over Ethernet.
This is a reliable means of sending data through a network connection which requires three main stages; connection
(establish a new connection between the host [the Galil] and the client [the computer]), communicate (send and receive
data) and closing (terminate the connection).

You must now implement your own modified version of this class using TCP communication principles taught in
lectures. Your first task is to write the underlying code that permits this communication to take place so that useful
commands can be sent to the PLC. Within a separate EmbeddedFunctions project, you have been provided with the
header file EmbeddedFunctions.h (note this is different from the header file of the same name in the previous part
of the assignment) that outlines a series of functions that you must implement (these will be implemented in the file
EmbededFunctions.cpp).

• void GOpen(String^ address, const int port): This establishes a new connection with the PLC by opening
up a TCP socket to the prescribed address.

• void GClose(): Closes the existing connection to the PLC.

• String^ GCommand(String^ command): This sends the query within command to the Galil and returns the
response to the caller.

All these should be implemented using networking principles discussed within the lectures.

Your code should be written to account for any errors that may occur during execution.

4 Overview of the Supplied Files

You have been provided with a repository (accessible through GitHub classroom) that contains a Visual Studio
solution ready for you to start coding. All dependencies have already been included and appropriately linked to the
corresponding projects.

There are two projects within the solution which each correlate to one part of this assignment as described in Section 3.

The Galil project is for part A and contains the following important files:

• Galil.h: This header file declares all the necessary functions that you must write in your Galil.cpp. Read all
the instructions carefully.

• Galil.cpp: This file is where you should implement all of the functions defined in Galil.h.

• GalilMain.cpp: This file should contain the main function for this project that you should use for testing your
implementation.

• EmbeddedFunctions.h: This header file wraps the Galil commands in a class structure. Whenever you send a
command to the board, send it through this class. Failure to do so will result in mark deduction.

2



• Other Files: gclib.h, gclibo.h, gclib errors.h, gclib record.h, gclib*.lib, gclibo*.lib, gclib.dll,
gclibo.dll, GalilControl*.lib, and Embedded funcs*.lib: These files contain all the dependencies required
for the project. They include those provided by Galil for use of their library along with some developed for
assignment components. They can be found throughout the provided repository and are already linked to your
project ready to be used.

The EmbeddedFunctions project is for part B and contains the following important files:

• EmbeddedFunctions.h: This header file defines the functions you must implement yourself using Ethernet
communication.

• EmbeddedFunctions.cpp: In this file you should write the implementation for all the functions defined within
EmbeddedFunctions.h.

• EFMain.cpp: This file should contain the main function for this project that you should use for testing your
implementation.

In addition to these, you also have been provided with the following that should be used while completing the
assignment (they can be found on Moodle alongside this spec):

You can find the following in the Moodle site under Assignment 1.

• Command Reference: This provides a manual for all the commands that can be sent to the Galil PLC as pro-
vided by the manufacturer. For this assignment these commands must be sent through the EmbeddedFunctions
interface which you will need to interact with throughout the assignment.

• Galil Use Instructions: This supplementary document provides additional details on running the assignment
using both the physical hardware in the lab and the provided simulator used for testing at home.

It is expected that you review and read all provided files (including code files) as they form part of this assignment
specification.

5 Marking Criteria

This assignment is worth 20 % of the total course mark. The breakdown of marks for this assignment is described in
table 1.

Table 1: Mark allocation for assignment
Criteria Weighting Description

In-person assessment 40 % (8 marks) As below in Section 5.1
Auto-marking 30 % (6 marks) As below in Section 5.2
Style marking 30 % (6 marks) As below in Section 5.3

5.1 In-person assessment

Your assessment will take place in Week 5, during your scheduled tutorial. It will constitute a short 15-minute
assessment where you will be provided with a question that prescribes functionality that is desired from the PLC.
Using your interface that you have already written (i.e. you Galil class implementation), you must call the functions
from the public interface to make the PLC act as specified. Please see the submission section below for opportunities
for bonus marks submitting early.

During this in-person assessment, you will also be tested on your implementation of the separate EmbeddedFunctions
class (part B). You must have the class implemented as prescribed and the tutor will type in and attempt to send
string commands to the Galil through the main function EFMain.cpp.

Warning: You must attend your designated weekly lab class to progress and get support with this assignment. You
will be assessed on the physical hardware in the lab classes, so make sure you test your code here beforehand.

Information for the assessment:

• You will also be asked two theoretical questions related to the PLC and will be given 10 minutes to answer
these questions after the completion of the first component. These will be submitted via an online form.

• It is really important to have all the class instantiation completed and be really prepared to call any of the
member functions to complete the specified task. Only one attempt is allowed.

• You should have your implementation ready for this along with a main() function ready to use. Within this you
can have written all objects instantiated ready for use but no other implementation is permitted.

3



• The functionality of this task will be assessed in-person by your demonstrator during your lab session directly
after the 25 minutes is complete.

• 2 marks will be awarded for the functionality of your program, 2 marks for the questions asked, and 4 marks
for your EmbeddedFunctions implementation.

5.2 Auto-marking

Auto-marking will be carried out by running your submitted code (the Galil class) against a series of tests written
to validate your implementation.

5.3 Style marking

Style marking will be broken down based on the following criteria.

• Structure (2 marks):

– Logical breakdown into separate files,

– Well-reasoned selection of data and function members of the classes and non-member functions.

– Good application of programming paradigms including DRY (don’t repeat yourself) and KISS (keep it
simple).

– Usage of modern C++ principles where appropriate.

• Layout (2 marks):

– Order of programming statements,

– Indentation,

– Use of braces and parenthesis,

– Consistent and well reasoned choice of constant/variable/function names that enhances readability.

• Program constructs (2 marks):

– Well reasoned choice of data types,

– Proper choice of iterative loops,

– Orderly use of other constructs such as switch, break, continue, etc

– Achieving best program logic with least amount of coding.

6 Submission

The assignment is submitted in two components: in-person completion of prescribed task and file submission for style
and auto-marking.

The first submission is conducted during your practical assessment in your lab class. This will be assessed in person
by your demonstrator for the completion of the provided task. You must also submit the assignment files Galil.h,
Galil.cpp, and Main.cpp to Moodle in the ‘Assignment 1 - Practical Assessment’ submission box directly after
completion of your assessment time (you will be given five minutes for this).

Completion and submission of this component must be during your assigned week 5 lab time slot. Early submission
for one bonus mark must be during your assigned week 4 lab time and early submission for two bonus marks must be
during your assigned week 3 lab time.

The second submission will be for code style and auto-marking. Without zipping the files, submit your EmbeddedFunctions.h,
EmbeddedFunctions.cpp, Galil.h, and Galil.cpp files to Moodle in the ‘Assignment 1 - Code Submission’ submis-
sion box. The submitted code will be first checked for similarity scores prior to the assessment outcomes.

Submission must be by 11.59 pm of Friday of week 5 (11 October, 2024). However, early submission can be
conducted to gain bonus marks. Submitting one week early (by 11.59 pm of Friday of week 4) will grant one bonus
mark and submitting two weeks early (by 11.59 pm of Friday of week 3) will grant two bonus marks.

Note: if you choose to submit early, both components must be submitted early. Submitting both parts one week early
will grant a total of one bonus mark. Similarly submitting both parts two weeks early will grant a total of two bonus
marks.

4



Note: bonus marks are added to the assignment, which is capped at 20 marks (you are not able to get more than 20
marks for the assignment).

7 Plagiarism

If you are unclear about the definition of plagiarism, please refer to What is Plagiarism? — UNSW Current Students.
You could get zero marks for the assignment if you were found:

• Knowingly providing your work to anyone and it was subsequently submitted (by anyone), or

• Copying or submitting any other persons’ work, including code from previous students of this course (except
general public open-source libraries/code). Please cite the source if you refer to open source code.

You will be notified and allowed to justify your case before such a penalty is applied.

5


	Assignment Aims
	Assignment Problem
	Your task
	Part A: Interacting with the Galil PLC
	Part B: Direct Ethernet communication with hardware

	Overview of the Supplied Files
	Marking Criteria
	In-person assessment
	Auto-marking
	Style marking

	Submission
	Plagiarism

