
Laboratory Exercise 5
Clocks and Counters

Revision of October 21, 2022

The purpose of this exercise is to learn how to create counters and to be able to control the
sequencing of operations when the actual clock rate is much faster than the rate the opera-
tions are occurring. Each part of this lab uses flip flops with an active-high, synchronous
reset.

WARNING: Parts II and III of this lab are complex designs. You are strongly encour-
aged to read the lab document carefully, more than once to make sure you understand what
you must do. Then, design and test your code as you go. Writing a lot of code and testing
it all at the end can lead to you wasting a lot of time.

This is also a good lab to try to run on the FPGA. You should try to complete as many parts
as you can before your lab session and run them on the FPGA during your lab session. If
you cannot do this, try to run your code on the FPGAs in the drop-in lab (BA3135) which
you can access 24/7 using your T-card.

1 Part I

Consider the circuit in Figure 1. It is a 4-bit synchronous counter that uses four T-type
flip-flops. The value of the counter comprises the Q outputs of the T flip-flops. The least
significant bit is on the left in Figure 1. The counter increments its value on each positive
edge of the clock if the Enable signal is asserted.

Q

T Q

Q

T Q

Q

T Q

Q

T QEnable

Clock

Reset

Figure 1: A 4-bit counter using T flip flops.

1.1 What to Do

The top-level module of your design should have the following signature declaration:

1

module part1 (

input logic Clock,

input logic Enable,

input logic Reset,

output logic [7:0] CounterValue

);

The CounterValue is the value of the counter comprised of the Q outputs of all of the T
flip-flops where CounterValue[7] is the most significant bit and CounterValue[0] is the
least significant bit of the counter output.

Perform the following steps:

1. Prior to lab, draw the schematic for an 8-bit counter using the same structure as shown
in Figure 1.

2. Write a System Verilog module for a T-type flip flop. Recall from lecture, that a T-flip
flop is built from a D Flip Flop and an XOR gate. NOTE: Do not name your module
tff as that is a reserved Quartus keyword.

3. Write the System Verilog module corresponding to your schematic. Your code should
instantiate your T-type flip-flop module eight times.

4. Simulate your counter with ModelSim to satisfy yourself that your circuit is working.

5. When you are satisfied with your simulations, you can submit to the Automarker.

1.2 Running on the FPGA

If you wish to run your design on an FPGA, use the mapping provided below.

module Port Name Direction DE1-SoC Pin Name
Clock Input KEY[0]
Enable Input SW[0]
Reset Input SW[1]

CounterValue Output LEDR[7:0] and HEX[1], HEX[0]

Table 1: Module port mapping to DE1-SoC/DE10-Lite pin names

2 Part II

In this part, you will design a counter that continuously outputs the hexadecimal values 0
through F, to an output called CounterValue. The rate at which the outputs change will

2

be configured using the Speed input.

The top-level module of your design should have the following declaration:

module part2

#(parameter CLOCK_FREQUENCY = 500)(

input logic ClockIn,

input logic Reset,

input logic [1:0] Speed,

output logic [3:0] CounterValue

);

In this section, you will build your counter with D-flip flops. Recall, you can build a counter
by using a register and adding 1 to its value (textbook Section 5.4.1).

Q <= Q + 1;

Clearly, this is much easier than what you did in Part I. Part I is done to show you the
fundamentals of how a counter circuit works, but when using System Verilog, we can use the
above construct and let the synthesis tool create the actual circuit.

Once you’ve built the counter, you will need to create a module that will increment the
counter at different speeds.

The rate at which the numbers change based on the Speed input is given in the following
table:

Speed[1:0] CountRate Description
00 Full Once every clock period
01 1 Hz Once a second
10 0.5 Hz Once every two seconds
11 0.25 Hz Once every four seconds

For example, let’s say ClockIn is 50 MHz, which is the clock available on the FPGA boards.
In this case, full speed means that the display flashes at 50 MHz, i.e., 50 million times a
second. Question: If you ran a counter at 50 MHz and displayed the value on a HEX, what
do you think you would see?

Running the counter at full speed is easy; you simply increment/decrement the counter by
1 every cycle. Supporting different speeds requires writing two modules: a Rate Divider

and a Display Counter.

Note: Since this design uses two complex modules, it is important to draw a well-labelled
schematic before writing any code. You should prepare this schematic prior to coming

3

to lab. Your schematic should include block diagrams of the part2 module and show the
Rate Divider and a Display Counter modules inside it. You must have this schematic
ready to show during your lab session.

2.1 Rate Divider

Let’s start with the Rate divider module. A Rate Divider is a counter that is used to
create a slow pulse given a faster clock signal. A pulse is when a signal is 1 for a single clock
period but is 0 at other times. Figure 2 shows a timing diagram for a 1 Hz pulse for an input
clock of 50 MHz.

Creating a pulse. To create a pulse, you need to count N -cycles of your input clock before
generating your pulse. For example, to create a 5 MHz pulse given a 50 MHz clock, you
count 10 cycles of the 50 MHz clock. As you can see, the sizing of your counter depends on
ratio between your clock frequency and your pulse frequency. Question: For the case
shown in Figure 2, how many bits should the counter be?

50 MHz

1.00 Hz
 Enable

50 Million Clock Cycles 50 Million Clock Cycles

Figure 2: Timing diagram for a 1 Hz enable signal

Outputting the pulse when the counter is zero can be done using a conditional assign state-
ment like:

assign pulse = (RateDividerCount == ’b0)?’1:’0;

4

2.2 Making the Rate Divider flexible.

To make the Rate Divider flexible, we want it to support two things: 1) counting different
numbers of clock cycles and 2) different clock frequencies.

Counting different numer of clock cycles. A common way to do this is to parallel load
the counter with the appropriate starting value and count down to zero. With this approach,
the end condition is always 0, and you can just load the counter with different starting values
depending on the period you want to count. For example, if you want to count 50 million
clock cycles, load the counter with 50 million - 1. Question: Why subtract 1? Do you think
it would make a difference in the above case? What about the case of creating a 10 MHz
clock from 50 MHz clock?

Supporting different frequencies. To support different clock frequencies, we will use pa-
rameters, which you learned about in Lab 3. We pass in a parameter, called CLOCK FREQUENCY,
to our Rate Divider module to specify the frequency of our clock. For example, the tester
and marker use a clock frequency of 500 Hz, while the FPGAs use a clock frequency of
50 MHz. You must calculate how many clock periods you have to count to support the
different Speed values, for a given clock frequency.

Sizing your counter. A flexible Rate Divider means that sizing your counter is non-trivial.
One approach is to make your counter big enough to fit the largest number you will count to?
For counting smaller values, the upper bits of your counter will simply be unused. Another,
more efficient, way is to size the counter based on the CLOCK FREQUENCY parameter. For
example, to count N values, you will need ⌈log2(N)⌉-bits. You can then use the built-in
$clog2() function in System Verilog, to use the exact right counter size for your design.

2.2.1 Building the final Rate Divider.

Now that you know how to build a flexible Rate Divider, you can implement it to have the
following declaration:

module RateDivider

#(parameter CLOCK_FREQUENCY = 500) (

input logic ClockIn,

input logic Reset,

input logic [1:0] Speed,

output logic Enable

);

5

Important: To work with the Automarker, your Rate Divider must follow these require-
ments:

1. Your counter must count down to 0 and generates an enable pulse when it reaches 0.

2. If Speed changes while counting down, the counter should continue to count down to
0 and only change speed after generating the enable signal.

2.2.2 Simulating the Rate Divider.

Before proceeding, you are strongly encouraged to write a separate do file to test your
Rate Divider module and make sure it works before proceeding. Your TA may ask to see
this do file prior to helping you debug your circuit.

When simulating the Rate Divider module, pay attention to the number of cycles you have
to simulate to check that the Enable pulse is working correctly. Question: What can you
change to speed up simulation, while still ensuring that your module works correctly? This
will also help you test your part2 module later on.

2.3 Display Counter module

The Rate Divider module allows us to generate slower pulses, given a faster input clock.
These Enable pulses from the RateDivider are used to drive the EnableDC signal on
DisplayCounter. Recall that an enable signal determines whether a flip flop, register, or
counter will change on a clock pulse. Compared to the Rate Divider, the DisplayCounter
is much simpler.

The declaration for DisplayCounter is as follows:

module DisplayCounter (

input logic Clock,

input logic Reset,

input logic EnableDC,

output logic [3:0] CounterValue

);

Once again, you are encouraged to test your DisplayCounter circuit separately before pro-
ceeding. Once that is done, you can now put these parts together to build the final circuit.

6

2.4 Putting it all together

Hopefully, you have already tested your Rate Divider and Display Counter modules sep-
arately. If so, you can put them together in the part2 module, test it and then submit it
for marking.

2.5 Running your design on FPGA

To test your design on an FPGA, you need to make some changes to your code. First,
to make it easier to see the numbers counting from 0 to F, you should instantiate a HEX

Decoder module. You can re-use the HEX Decoder you wrote for Lab 2. Simply connect the
CounterValue output from the DisplayCounter module to the input of the HEX Decoder.

Also, keep in mind that the FPGA uses a 50 MHz clock. So you will need to pass in the
right parameter to your part2 module.

Once you have made these changes, you can use the mapping shown in the Table below:

module Port Name Direction Pin Name
Clock Input CLOCK 50
Reset Input SW[9]
Speed Input SW[1:0]

CounterValue Output HEX[0]

Table 2: Module port mapping to DE1-SoC/DE10-Lite pin names

3 Part III

In this part, you need to implement a Morse code encoder. Morse code uses patterns of
short and long pulses to represent a message. Each letter is represented as a sequence of
dots (a short pulse), and dashes (a long pulse). For example, starting from A, the first eight
letters of the alphabet are represented as:

7

A • —
B — • • •
C — • — •
D — • •
E •
F • • — •
G — — •
H • • • •

The input to your circuit is one of the eight letters shown in the table above. You must then
output the appropriate Morse code for that letter to the output DotDashOut using short and
long pulses. Short (0.5s) pulses represent dots and long (1.5s) pulses represent dashes. The
time between pulses is 0.5 seconds. Similar to Part 2, you must determine how many cycles
to count for 0.5 seconds, for a given CLOCK FREQUENCY.

You should encode the pattern for each letter using a sequence of 1’s and 0’s, to correspond
to on and off. Since the minimum time is 0.5 seconds, set 0s and 1s to be 0.5 seconds in
duration. This means that a single 0 is a pause or off, a single 1 is a dot, and 111 is a dash.

First, write out the exact sequence of 0s and 1s corresponding to each of the letters you need
to display. You will see that the sequences have different lengths. For simplicity and to be
consistent with what the automarker expects, you should store all the letters using 12-bits.
For example, the pattern for A would be stored as 101110000000.

The top-level module for this part should have the following declaration:

module part3

#(parameter CLOCK_FREQUENCY=500)(

input logic ClockIn,

input logic Reset,

input logic Start,

input logic [2:0] Letter,

output logic DotDashOut,

output logic NewBitOut

);

Figure 3 shows a timing diagram of how your circuit should operate, for the letter A. The
letter is selected by the Letter input using 000 for A, 001 for B, etc. The Morse code for
the letter is output when the Start signal is asserted, for 1 clock period. Figure 3 shows the
first 4 bits of A being flashed, for a very low clock frequency. Using the clock in the marker
or the FPGA will cause the DotDashOut signal to stay 0 or 1 for many more clock cycles.

8

Figure 3: Timing diagram for Part 3

To make sure your design meets the requirements of the marker, please note the following:

1. There maybe many cycles between Reset being de-asserted and Start being asserted.
This is shown with the two wavy lines in Figure 3.

2. Note the delay between when Start is asserted and when DotDashOut starts displaying
the sequence.

3. You must assert NewBitOut to 1 for 1 clock period for all 12 bits of the sequence, regardless
of how many dots/dashes the letter needs. This is to ensure that the marker tests your
outputs at the right cycles.

4. You can assume that the Letter input is held constant while you flash the entire sequence.

With the requirements of the design covered, let’s look at how you should design your circuit.

3.1 Designing the encoder

Implementing the Morse Code encoder will use concepts you learned earlier such as the Rate
divider and Shift registers, which you used in the previous lab. Since you need to read
each bit out, one at a time, you should use a shift register to load the letter to flash.
When a letter is selected, use the parallel load feature of the shift register to load the
pattern for that letter to the shift register. Then read each 0 or 1 individually out of a shift
register at 0.5 seconds per read.

Similar to supporting different Speed values in Part 2, you should use a mux to select the
letter to flash, based on the Letter input. You should use counters, similar to Lab 4, to
count the cycles that the DotDashOut signal should be high for. Lastly, you should create a
pulse, similar to Part 2, for NewBitOut.

Prior to coming to lab, you should draw a block diagram of the circuit you are imple-
menting for this part.

9

3.2 Running on FPGA

To run on an FPGA, use the mapping shown in Table 3. Similar to part 2, make sure to
update the CLOCK FREQUENCY parameter since the FPGA uses a 50 MHz clock.

module Port Name Direction Pin Name
ClockIn Input CLOCK 50
Reset Input SW[9]
Start Input KEY[0]
Letter Input SW[2:0]

DotDashOut Output LEDR[0]
NewBitOut Output LEDR[1]

Table 3: Module port mapping to DE1-SoC/DE10-Lite pin names

4 Submission

When submitting to the Automarker make sure you have modules declared as shown below
as the Automarker will be looking for modules with these exact signatures. Ensure you have
properly followed the instructions prior to submitting your code.

4.1 Part I

For Part I, you need to submit a file named part1.sv with the following module in it:

module part1(Clock, Enable, Reset, CounterValue);

4.2 Part II

For Part II, you need to submit a file named part2.sv with the following module in it:

module part2(ClockIn, Reset, Speed, CounterValue);

4.3 Part III

For Part III, you need to submit a file named part3.sv with the following module in it:

10

module part3(ClockIn, Reset, Start, Letter, DotDashOut, NewBitOut);

11

	Part I
	What to Do
	Running on the FPGA

	Part II
	Rate Divider
	Making the Rate Divider flexible.
	Building the final Rate Divider.
	Simulating the Rate Divider.

	Display Counter module
	Putting it all together
	Running your design on FPGA

	Part III
	Designing the encoder
	Running on FPGA

	Submission
	Part I
	Part II
	Part III

