
COMP90041: Final Project

Lecturer: Dr. Tilman Dingler

Submission Due: 5pm (AEST), June 30, 2020.

This is your final project for COMP90041. It replaces the exam we would usually have for this subject
and, therefore, counts 60% of your final grade. Consequently, the total number of points you can collect
by completing this final assessment is 60 points. The number of points available is listed for each Section.
All the best!

Moral Machines

The idea of Moral Machines is based on the Trolley Dilemma, a fictional scenario presenting a decision
maker with a moral dilemma: choosing ”the lesser of two evils”. The scenario entails an autonomous car
whose brakes fail at a pedestrian crossing. As it is too late to relinquish control to the car’s passengers,
the car needs to make a decision based on the facts available about the situation. Figure 1 shows an
example scenario. In this project, you will create an Ethical Engine, a program designed to explore
different scenarios, build an algorithm to decide between the life of the car’s passengers vs. the life of the
pedestrians, audit your decision-making algorithm through simulations, and allow users of your program
to judge the outcomes themselves.

1 Build an Ethical Engine (15 points)

Your program should consist of seven core classes:

ethicalengine/

|-- Character.java

|-- Person.java

|-- Animal.java

|-- Scenario.java

|__ ScenarioGenerator.java

Audit.java

EthicalEngine.java

welcome.ascii

You can create additional classes if needed. EthicalEngine.java contains the main function and coor-
dinates the program flow. Scenario.java contains a list of passengers, a list of pedestrians, as well as
additional scenario conditions, such as whether pedestrians are legally crossing at the traffic light. The
decision-making algorithm is implemented as a static method with the name decide(Scenario scenario)
in EthicalEngine.java. The welcome.ascii file contains a text message that needs to be imported by your
program and printed to the console to introduce the user task (interactive mode). Start by implement-
ing the classes Character.java, Person.java, Animal.java, and Scenario.java. SenarioGenerator.java is
explained in detail in Section 2 and Audit.java in Section 3.

The classes Character, Person, Animal, Scenario, and ScenarioGenerator must be part
of the package ethicalengine. The classes Audit and EthicalEngine should not be within a
package.

c©The University of Melbourne 2020, v1.9 1

Figure 1: Scenario example: a self-driving car approaches a pedestrian crossing but its breaks fail. Your
algorithm needs to decide between two cases. Left : The car will continue ahead and drive through the
crossing resulting in one elderly man, one pregnant woman, one boy, and one dog losing their lives.
Right: The car will swerve and crash into a concrete barrier resulting in the death of its passengers: one
women, one man, and one baby. Note that the pedestrians abide by the law as they are crossing on a
green signal (image source: http://moralmachine.mit.edu/).

1.1 The Abstract Class Character

Character is an Abstract Class from which all character types inherit. This base class should be imple-
mented as depicted in Figure 2. The class further comprises two enumeration types:

1. Gender must include the types FEMALE and MALE as well as a default option UNKNOWN, but
can also include more diverse options if you so choose.

2. BodyType includes the types AVERAGE, ATHLETIC, and OVERWEIGHT as well as a default
option UNSPECIFIED.

The Character Class should implement the constructors as depicted in Figure 2. Make sure the empty
constructor initializes all attributes with appropriate default values.
Age should be treated as a class invariant for which the following statement always yields true: age >= 0.

1.2 Classes Inheriting from Character.java

Create at least two concrete classes that directly inherit from the abstract class Character :

1. Person.java: scenarios are inhabited by people who exhibit a number of characteristics (e.g., age,
gender, body type, profession etc.). In the scenarios, each person is either considered to be a
passenger or a pedestrian. A person can be you.

2. Animal.java: animals are part of the environment we live in. People walk their pets so make sure
your program accounts for these, at least for: cats and dogs.

c©The University of Melbourne 2020, v1.9 2

Figure 2: UML Diagram for Character.java

1.2.1 The Class Person.java

This class represents a human in the scenarios. On top of its parent methods, the class Person must at
least include the following public methods:

• the constructor Person(int age, Profession profession, Gender gender, BodyType bodytype, boolean
isPregnant).

• the copy constructor Person(Person otherPerson).

• getAgeCategory(): returns an enumeration value of the type AgeCategory depending on the person’s
age with one of the following values:

– BABY : a person with an age between 0 and 4.

– CHILD : a person with an age between 5 and 16.

– ADULT : a person with an age between 17 and 68.

– SENIOR: a person with an age above 68.

• the public method getProfession(): returns an enumeration value of the type Profession, which
must include the following values: DOCTOR, CEO, CRIMINAL, HOMELESS, UNEMPLOYED,
UNKNOWN (as default). Only ADULTs have professions, other age categories should return the
default value NONE. Additionally, you are tasked with coming up with at least two more categories
you deem feasible.

• the public method isPregnant(): returns a boolean indicating whether the person is pregnant. For
all instances of Person whose gender is not FEMALE this should return false.

• the public method setPregnant(boolean pregnant): sets the value returned by isPregnant() while
preventing invalid states, such as a pregnant male.

• isYou(): returns a boolean indicating whether the person is representative of the user, e.g., you
are one of the passengers in the car.

• the public method setAsYou(boolean isYou): sets the value of whether the person is representative
of the user.

• the public method toString() must output a person’s characteristics according to the format shown
below.

Pregnancy should be treated as a class invariant for which the following statement always yields true:
if the person’s gender is not female, the person cannot be pregnant. Also, only persons who belong to
the age category ADULT have a profession.
The public method toString() must return the following output format when printed to the command-
line:

c©The University of Melbourne 2020, v1.9 3

[you] <bodyType> <age category> [profession] <gender> [pregnant]

Note that attributes in brackets [] should only be shown if they apply, e.g., a baby does not have a
profession so therefore the profession is not displayed. Here is an example:

athletic adult doctor female

or

average adult doctor female pregnant

Similarly, here is an example if the person is you:

you average baby male

Note that words are in lowercase and separated by single spaces. Age is ignored in the output.

1.2.2 The Class Animal.java

This class represents animals in the scenarios. On top of its parent methods, the class Animal must
include the following public methods:

• the constructor Animal(String species).

• the copy constructor Animal(Animal otherAnimal).

• the public method getSpecies(): returns a String indicating what type of species the animal repre-
sents.

• the public method setSpecies(String species): sets the value returned by getSpecies().

• the public method isPet(): returns a boolean value depending whether the animal is a pet or wild
animal.

• the public method setPet(Boolean isPet): sets the value returned by isPet().

• the public method toString() must output a pet’s characteristics according to the format shown
below.

The public method toString() must return the following output format when printed to the command-
line:

<species> [is pet]

Here is an example:

cat is pet

Here is another example where isPet() returns false:

bird

Note that words are in lowercase, separated by single spaces, and that gender, age, and bodyType are
ignored in the output.

c©The University of Melbourne 2020, v1.9 4

1.3 The Class Scenario.java

This class contains all relevant information about a presented scenario, including the car’s passengers
and the pedestrians on the street as well as whether the pedestrians are crossing legally.
Each scenario can have only one instance of Person for which isYou() returns true.
The following public methods must be implemented:

• the constructor Scenario(Character[] passengers, Character[] pedestrians, boolean isLegalCrossing):
you can use Arrays or ArrayLists in your class, but you need to make sure this constructor takes
a person array as an argument.

• the public method hasYouInCar(): returns a boolean indicating whether you (the user) is in the
car.

• the public method hasYouInLane(): returns a boolean indicating whether you (the user) are in the
lane, i.e., crossing the street.

• the public method getPassengers(): returns the cars’ passengers as a Character[] array.

• the public method getPedestrians(): returns the pedestrians as a Character[] array.

• the public method isLegalCrossing(): returns whether the pedestrians are legally crossing at the
traffic light.

• the public method setLegalCrossing(boolean isLegalCrossing): sets whether the pedestrians are
legally crossing the street.

• the public method getPassengerCount(): returns the number of passengers in the car (in int).

• the public method getPedestrianCount(): returns the number of pedestrians on the street (in int).

• the public method toString() must output the scenario according to the format shown below.

The public method toString() must return the following output format when printed to the command-
line:

======================================

Scenario

======================================

Legal Crossing: <yes/no>

Passengers (<getPassengerCount>)

- <character.toString>

.

.

Pedestrians (<getPedestrianCount)

- <character.toString>

.

.

Here is an example for a legal crossing (green light):

======================================

Scenario

======================================

Legal Crossing: yes

Passengers (4)

- cat is pet

- overweight child male

- average senior female

- athletic adult ceo female pregnant

c©The University of Melbourne 2020, v1.9 5

Pedestrians (3)

- average baby male

- average adult doctor male

- overweight adult homeless female

Here is another example with you in the car and a (non-pregnant) women and pedestrians crossing the
street at a red light (illegal crossing):

======================================

Scenario

======================================

Legal Crossing: no

Passengers (2)

- you average baby male

- average adult criminal female

Pedestrians (2)

- average senior male

- average senior female

Note that character characteristics are written in lower case and separated by single spaces. Your output
must match the output specifications.

1.4 The Class EthicalEngine.java

This class holds the main method and manages your program execution. It takes care of program
parameters (see Section 4) as well as user input (see Section 5).
This class also houses the decide(scenario) method, which implements the decision-making algorithm
outputting either PEDESTRIANS or PASSENGERS depending on whom to save. The code must
choose whom to save for any scenario.

Decision Algorithm Your task is to implement the public static method decide(Scenario scenario)
that either returns a value of the Enumeration type Decision, which is either PEDESTRIANS or PAS-
SENGERS. Your code must choose whom to save for any scenario.
To make the decision, your algorithm needs to consider the characteristics of the characters involved as
well as the situation. You can take any of the characters’ characteristics (age, bodyType, profession,
pets, etc.) into account when making your decision, but you must base your decision on at least 5
characteristics–from the scenario itself (e.g., whether it’s a legal crossing) or from the characters’ at-
tributes. Note that there is no right or wrong in how you design your algorithm. Execution is what
matters here so make sure your code meets the technical specifications. But you may want to think
about the consequences of your algorithmic design choices.

2 Scenario Generator (10 points)

The class ScenarioGenerator.java will be the basis of your simulation and shall be used to create a variety
of scenarios. To guarantee a balanced set of scenarios, it is crucial to randomize as many elements as
possible, including the number and characteristics of persons and animals involved in each scenario as
well as the scenario itself.
To be able to properly test your scenarios and make sure your results can be replicated, you must apply
pseudorandomness. Therefore, you need to familiarize yourself first with the class java.util.random 1 and
especially with the function setSeed(long seed).
ScenarioGenerator.java must, therefore, include the following methods:

• the empty constructor ScenarioGenerator(): this constructor should set the seed to a truly random
number

1https://docs.oracle.com/javase/8/docs/api/java/util/Random.html

c©The University of Melbourne 2020, v1.9 6

• the constructor ScenarioGenerator(long seed): this constructor sets the seed with a predefined
value

• the constructor ScenarioGenerator(long seed, int passengerCountMinimum, int passengerCount-
Maximum, int pedestrianCountMinimum, int pedestrianCountMaximum): this constructor sets
the seed as well as the minimum and maximum number for both passengers and pedestrians with
predefined values

• the public method setPassengerCountMin(int min): sets the minimum number of car passengers
for each scenario

• the public method setPassengerCountMax(int max): sets the maximum number of car passengers
for each scenario

• the public method setPedestrianCountMin(int min): sets the minimum number of pedestrians for
each scenario

• the public method setPedestrianCountMax(int max): sets the maximum number of pedestrians for
each scenario

• the public method getRandomPerson() which returns a newly created instance of Person with
random age, gender, bodyType, profession, and state of pregnancy

• the public method getRandomAnimal() which returns a newly created instance of Animal with
random age, gender, bodyType, species, and whether it is a pet or not

• the public method generate() which returns a newly created instance of Scenario containing a
random number of passengers and pedestrians with random characteristics as well as a randomly
red or green light condition with you (the user) being either in the car, on the street, or absent.

The method generate() will need to abide by the minimum and maximum counts previously set for
passengers and pedestrians in the scenario. If these values have not been explicitly set they need to
be implicitly (i.e., by default) set to 1 and 5 respectively. A minimum may never be larger than its
corresponding maximum.

3 Audit your Algorithm (10 points)

An audit is an inspection of your algorithm with the goal of revealing inherent biases that may be built
in as an (un)intended consequence. In this task, you will simulate a variety of scenarios and have your
EthicalEngine decide on their outcomes.
The class Audit.java should:

1. create a specific number of random scenarios,

2. allow your EthicalEngine to decide on each outcome,

3. and summarize the results for each characteristic in a so-called statistic of projected survival.

The following methods must, therefore, be implemented:

• the empty constructor Audit()

• the public method run(int runs): runs the simulation by creating N = runs scenarios and running
each scenario through the EthicalEngine using its decide(Scenario scenario) method. For each
scenario you need to save the outcome and add the result to your statistic

• the public method setAuditType(String name): sets the name of the audit type. For example:
Algorithm for an audit of your algorithm.

• the public method getAuditType(): returns the name of the audit. Default should be Unspecified.

c©The University of Melbourne 2020, v1.9 7

• the public method toString(): returns a summary of the simulation in the format depicted below.
If no simulation has been run, this method returns ”no audit available”.

• the public method printStatistic(): prints the summary returned by the toString() method to the
command-line.

3.1 Statistic of Projected Survival

Your statistic should list a number of factors, including:

• age category

• gender

• body type

• profession

• pregnant

• class type (person or animal)

• species

• pets

• legality (red or green light)

Your statistic should account for each value of each respective characteristic, that are present in the given
scenarios. For example, if you had scenarios with overweight body types, overweight must be listed in
the statistic. If none of your scenarios included this particular body type, it must not be listed there.
Also, make sure that you only update the statistic for, let’s say cats, if a cat was present in the tested
scenario. If there is no cat in a given scenario, you must not change the % of cats that survived in your
audit.
This is the output format (with pseudocode) of the statistic:

======================================

<auditType> Audit

======================================

- % SAVED AFTER <int run> RUNS

<for each characterstic:>

<characterstic>: <survival ratio>

--

average age: <average>

Here is an example output for config.csv :

======================================

Algorithm Audit

======================================

- % SAVED AFTER 3 RUNS

ceo: 1.0

cat: 1.0

bird: 1.0

animal: 1.0

dog: 1.0

pet: 1.0

child: 1.0

athletic: 0.9

red: 0.7

c©The University of Melbourne 2020, v1.9 8

person: 0.6

female: 0.6

male: 0.6

average: 0.5

doctor: 0.5

senior: 0.5

baby: 0.5

pregnant: 0.5

green: 0.3

adult: 0.3

unknown: 0.0

criminal: 0.0

overweight: 0.0

--

average age: 20.5

The list of characteristics must be sorted in descending order of the survival ratio. Note that the last
two lines are not part of the sorted statistic but are at a fixed position in the output. The average age is
calculated across all survivors of class Person (animals are excluded) and displayed with one digit after
the decimal place (you can simply clip it). Your statistic must not list animals by gender, age, or body
type.

3.1.1 Update your Statistic within an Audit

If you run multiple scenarios within a particular audit, make sure to update your statistic rather than
overwrite it. For example, you may run an audit subsequently over 10 (audit.run(10)), 50 (audit.run(50)),
and 100 (audit.run(100)) scenarios and print an updated statistic after each run to the command-line.
The result on the command-line should be three statistic outputs: the first with 10, the second with 60,
and the last with 160 runs.

3.2 Save your Audit Results

To save the results of your audit to a file, add the public method printToFile(String filepath) to your
Audit class. The method prints the results of the toString() method to a target file named results.log.
The filepath variable (e.g., ’logs/results.log’) is set by the command-lie flat −r or −−results and includes
both the target directory (logs/, in this case) and the filename (results.log). If results.log already exists
in the target directory, you should append the new data rather than overwrite the existing file. If the
file does not exist, your program should create it. If the directory specified by the filepath variable does
not exist, your program should print the following error message to the command-line and terminate:

ERROR: could not print results. Target directory does not exist.

The results must be saved in ASCII code, i.e., human-readable.

4 Import Scenarios from a Configuration File (10 points)

Instead of generating scenarios solely randomly, you need to make sure in this task that your program
can import scenarios from a data file. This will allow you to run audits on a consistent set of scenarios.
In this task, you need to extend your EthicalEngine class to allow it to create scenarios based on data it
reads from a configuration file.

4.1 Specify the Configuration File as Command-Line Argument

The config file should be specified when your program is launched. In this task, you need to create a
command-line option. Command-line options or so-called flags specify options that modify the operation

c©The University of Melbourne 2020, v1.9 9

of your program. Options follow the program execution command on the command-line, separated by
spaces. Options can be specified in any order. The following program calls are equivalent and should be
supported by your program:

$ java EthicalEngine --config path/to/config.csv

and

$ java EthicalEngine -c path/to/config.csv

The command line argument following the flag –config of -c respectively specifies the filepath where the
configuration file (config.csv) is located. Your program should check whether the file is located at the
specified location and handle a FileNotFoundException in case the file does not exist. In this case,
your program should terminate with the following error message:

ERROR: could not find config file.

4.2 Parsing the Configuration File

Next, your program nees to read in the config file. Table 1 lists the contents of config.csv, a so-called
comma-separated values (CSV) file. The file contains a list of values, each separated by a comma.
As can be seen in Table 1, the first line contains the headers, i.e., the names (and description) of each
data field and can therefore be ignored by your program. Each subsequent row presents an instance of
Character. Scenarios are preceded by a single line that starts with scenario: and indicates whether the
scenario depicts a legal (green) or illegal (red) crossing. In this case, the first scenario describes a legal
crossing

scenario:green

with 3 passengers and 3 pedestrians (on of which is a dog). In fact, the first data set describes the
scenario depicted in Figure 1. The second scenario describes an illegal crossing with 4 pedestrians and
2 car passengers.
Your EthicalEngine class needs to be able to read in a config file as depicted in Table 1 and create a
Scenario instance for each scenario the file contains. Note that a config file can contain any number of
scenarios with any number of passengers and pedestrians. You can assume that all config files follow the
same format with the columns ordered as shown in Table 1.

4.3 Handle Invalid Data Rows

While reading in the config file line by line your program may encounter three types of exceptions, which
your program should be able to handle:

1. Invalid number of data fields per row: in case the number of values in one row is less than or exceeds
10 values a InvalidDataFormatException should be thrown. Your program should handle such
exceptions by issuing the warning statement ”WARNING: invalid data format in config file in line
< linecount >” to the command-line and skip the respective row then continue reading in the next
line.

2. Invalid data type: in case the value can not cast into an existing data type (e.g., a character where
an int should be for age) a NumberFormatException should be thrown. Your program should
handle such exceptions by issuing the warning statement ”WARNING: invalid number format in
config file in line < linecount >” to the command-line, assign a default value instead, and continue
with the next value in that line.

3. Invalid field values: in case your program does not accommodate a specific value (e.g., skinny as a
bodyType) a InvalidCharacteristicException should be thrown. Your program should handle
such exceptions by issuing a warning statement ”WARNING: invalid characteristic in config file in
line < linecount >” to the command-line, assign a default value instead, and continue with the
next value in that line.

c©The University of Melbourne 2020, v1.9 10

Table 1: Contents of the configuration file (config.csv).

Note that < linecount > depicts the line number in the config file where the error was found. While
you can import the NumberFormatException from the package java.lang you will need to create custom
exceptions for the other two.

4.4 Audit your Algorithm Using the Scenarios from the Config File

Once your program has imported all scenarios from config.csv it should create a new Audit. Therefore,
you need to extend your Audit class by adding two more methods:

• the constructor Audit(Scenario[] scenarios): this constructor creates a new instance with a fixed
set of scenarios.

• the public method run(): runs the simulation with the scenarios specified and runs each scenario
through the EthicalEngine using its decide(Scenario scenario) method.

Use the printToFile(String path) method to show the results of your audit on the console-line as well as
save your audit results to results.log. The program should terminate after showing the statistic.

5 Interactive Scenarios (10 points)

Now it is time to let the user take over and be the judge. Therefore, you need to build an interactive
console program, which presents the user with a number of ethical scenarios. These scenarios can either
be randomly generated or imported from a config file. For each scenario the user is asked to make a
decision about who should survive. The results are logged to a user file (user.log) but only if the user
consents to it.

5.1 Program Setup

As described in Section 4.1, we will use command-line options or so-called flags to initialize the execution
of EthicalEngines. Therefore, you should add a few more options as possible command-line arguments.
Print Help Make sure your program provides a help documentation to tell users how to correctly call
and execute your program. The help is a printout on the console telling users about each option that
your program supports.
The following program call should invoke the help:

c©The University of Melbourne 2020, v1.9 11

$ java EthicalEngine --help

and

$ java EthicalEngine -h

The command-line output following the invocation of the help should look like this:

EthicalEngine - COMP90041 - Final Project

Usage: java EthicalEngine [arguments]

Arguments:

-c or --config Optional: path to config file

-h or --help Print Help (this message) and exit

-r or --results Optional: path to results log file

-i or --interactive Optional: launches interactive mode

The help should be displayed when the −−help or −h flag is set or if the −− config flag is set without
an argument (i.e., no path is provided). If the − − config or −c flag is not set, your program should
generate random scenarios. The flag −− interactive or −i indicates the interactive user mode. Without
this flag the audit from Section 3 should kick in. Only if the − − interactive or −i is set the program
launches its interactive scenarios. The flag −− results or −r indicates the path and filename where the
results of your audit should be saved to. See Section 3.2 for details.
The following command will launch the program with a config file in the interactive mode:

$ java EthicalEngine -i -c config.csv

Here is an example of launching the program in the interactive mode with random scenarios:

$ java EthicalEngine -i

5.2 Program Execution

You need to extend the EthicalEngine class to manage the user interaction and support the following
program flow: show a welcome message, collect user consent for data collection, present 3 scenarios and
have user judge these, show the statistic, and ask for another round of scenarios.
Show Welcome Screen At the start of the program, a welcome message must be shown: your program
should read in and display the contents of welcome.ascii to the user without modifying it. The message
provides background information about Moral Machines and walks the user through the program flow.
Next, your program should collect the user’s consent before saving any results. Explicit consent is crucial
to make sure users are aware of any type of data collection. Your program should, therefore, ask for
explicit user consent before logging any user responses to a file. After the welcome message, you program
should therefore prompt the user with the following method on the command-line:

Do you consent to have your decisions saved to a file? (yes/no)

Only if the user confirms (yes), your program should save the user statistic to user.log. If the user selects
no your program should function normally but not write any of the users’ decisions to the file (it should
still display the statistic on the command-line though). If the user types in anything other than yes or
no, an InvalidInputException should be thrown and the user should be prompted again:

Invalid response. Do you consent to have your decisions saved to a file? (yes/no)

c©The University of Melbourne 2020, v1.9 12

5.2.1 Present Scenarios

Once the user consented (or not), the scenario judging begins. Therefore, scenarios are either imported
from the config file or (if the config file is not specified) randomly generated. Therefore, you should use
the Audit class to keep track of the scenarios and decisions. Make sure to set the audit type to User
using the method setAuditType(String name). Scenarios are presented one by one using the toString()
method of the Scenario instance and printing its outputs to the command-line. Each scenario should be
followed by a prompt saying:

Who should be saved? (passenger(s) [1] or pedestrian(s) [2])

Any of the following user inputs should be considered saving the passengers:

• passenger

• passengers

• 1

Any of the these user inputs should be considered saving the pedestrians:

• pedestrian

• pedestrians

• 2

After the user made a decision, the next scenario is shown followed by the prompt to judge the scenario.
This procedure should repeat until 3 scenarios have been shown and judged. After the third scenario
decision, the result statistic is presented.

5.2.2 Show the Statistic

The statistic must be printed to the command-line using the same method and format as described in
Section 3.1. If the user previously consented to the data collection, the statistic is saved (i.e., appended)
to the file user.log using the function printToFile(String filepath) of the Audit class. Additionally, the
user should be prompted to either continue or quit the program as follows:

Would you like to continue? (yes/no)

Should the user choose no the program terminates. If the user decides to continue (yes), the next three
scenarios should be shown. If the config file does not contain any more scenarios, the final statistic should
be shown followed by the following prompt

That’s all. Press Enter to quit.

As soon as the Enter key is pressed, the program should terminate.
Here is an example of a statistic followed by a prompt to continue:

======================================

User Audit

======================================

- % SAVED AFTER 3 RUNS

ceo: 1.0

criminal: 1.0

dog: 1.0

pregnant: 1.0

child: 1.0

athletic: 0.9

red: 0.7

c©The University of Melbourne 2020, v1.9 13

person: 0.6

female: 0.6

male: 0.6

average: 0.5

unknown: 0.5

senior: 0.5

adult: 0.5

pet: 0.5

green: 0.3

animal: 0.3

doctor: 0.0

cat: 0.0

bird: 0.0

baby: 0.0

overweight: 0.0

--

average age: 24.6

Would you like to continue? (yes/no)

And that’s it. Almost.

6 Documentation (5 points)

Always make sure to document your code in general. For this project you need to provide two types of
documentation for your program: a UML diagram depicting your overall architecture and make sure to
use JavaDoc syntax so that you can create an automatic Java code documentation in HTML. Only your
UML diagram needs to be submitted through Canvas. You do not need to submit your documentation
created through JavaDoc. This will be created automatically.

6.1 UML Diagram

Prepare a UML diagram describing your entire program containing all classes, their attributes (including
modifiers), methods, associations, and dependencies. For each class you need to identify all its instance
variables and methods (including modifiers) along with their corresponding data types and list of pa-
rameters. You should also identify relationships between classes, including associations, multiplicity, and
dependencies. Static classes must be included in the UML. You can leave out any helper function that
you added.

6.2 Javadoc

Make sure all your classes indicate their author and general description. For each constructor and method
specified in the final project description you must provide at least the following tags:

• @param tags

• @returns tag

• @throws tag

You can leave minor helper function that you may have added. Make sure to test the correct generation
of your documentation using javadoc2.

2https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html

c©The University of Melbourne 2020, v1.9 14

7 Reflection (Bonus Task)

This optional task gives you the opportunity to reflect on and describe the reasons you applied when de-
signing your program’s decision-making as well as the consequences revealed by auditing your algorithm.
For example, what were inherent biases you might have become aware by running this simulation? Were
there any surprises? What are the consequences of design choices that you take as a programmer in
general? Please make sure to stay below 250 words.
This part is optional but allows you to score an additional 2 points you may have lost somewhere else.
Note that you cannot exceed the total of 60 points for the entire project. But we would love to read
about your thoughts.

8 Submit your Work

You submit your work by logging into your server and uploading your files. Immediately after you make
a submission using the “submit” command, computer automatic test will be conducted on your program
by automatically compiling, running, and comparing your outputs for several test cases with generated
expected outputs. The automatic test will deem your output wrong if your output does not match the
expected output, even if the difference is just having an extra space or missing a comma. Therefore it is
crucial that your output follows exactly the same format shown in the examples above.

The keyword import is available for you to use standard java packages. However, make sure that your
project structure follows the structure as described in Section 1. DO NOT use the package any other
packages than ethicalengine. Note that the files Audit.java and EthicalEngine.java ARE NOT part of
the ethicalengine package and must therefore be placed outside of the ethicalengine directory. Adding
any other packages to your project will break the automated tests and you will lose points. If you are
using Netbeans as the IDE, be aware that the project name may automatically be used as the package
name. You must remove these package names at the beginning of the source files before you submit them
to the system.
Make sure to use ONLY ONE Scanner object throughout your program. Otherwise the automatic test
will cause your program to generate exceptions and terminate. The reason is that in the automatic test,
multiple lines of test inputs are sent all together to the program. As the program receives the inputs, it
will pass them all to the currently active Scanner object, leaving the rest Scanner objects nothing to read
and hence cause run-time exception. Therefore it is crucial that your program has only one Scanner
object. Arguments such as “It runs correctly when I do manual test, but fails under automatic test”
will not be accepted.

8.1 Submission on Server

Make sure to submit all files, including your package directory (ethicalengine) and the welcome.ascii
message in your root project folder as depicted in Section 1. The entry point of your program should
be in the class called EthicalEngine (in the file called EthicalEngine.java). Thus, your program will be
invoked via:

java EthicalEngine

Make sure the command-line options work as described in Section 5.1. Note the exact spelling
including lower and upper case. The same goes for the classes in the package ethicalengine depicted
in Section 1. Any other Java classes you may create must be stored together in the same directory as
Audit.java and EthicalEngine.java. Make sure to put all project files under your home directory on the
student server.
Due to the package ethicalengine we need you to create a file with the title ethicalengine.txt, which
contains a list of all classes you would like to submit inside of your ethicalengine package. For example,
for the following classes inside of your ethicalengine page:

• Animal.java

c©The University of Melbourne 2020, v1.9 15

• Character.java

• Person.java

• Scenario.java

• ScenarioGenerator.java

• MyCustomClass.java

You need to create a file called ethicalengine.txt with the following contents (You MUST put each java
file name per line in ethicalengine.txt):

Animal.java

Character.java

Person.java

Scenario.java

ScenarioGenerator.java

MyCustomClass.java

Note that this file should ONLY CONTAIN the java classes that go inside the ethicalengine package.
Do not list classes like Audit.java or EthicalEngine.java that reside outside of this package. The ethi-
calengine.txt class must be submitted along with your program files and the welcome.ascii.
Here is the submission command:

submit COMP90041 final *.java ethicalengine/*.java welcome.ascii ethicalengine.txt

For late submissions, use the following command:

submit COMP90041 final.late *.java ethicalengine/*.java welcome.ascii ethicalengine.txt

Note that you must submit all Java files you have used for your project. If you submit your
code multiple times, the later submission will overwrite the previous one. If you submit all your java
source codes and then modify one source code, you need to submit all of your source codes again, not
just the modified one.

You should then verify your submission using the following command. This will store the verification
information in the file ‘feedback.txt’, which you can then view:

verify COMP90041 final > feedback.txt

For late submissions, use the following command:

verify COMP90041 final.late > feedback.txt

You should issue the above commands from within the same directory as where your project files are
stored (to get there you may need to use the cd ‘Change Directory’ command). Note that you can submit
as many times as you like before the deadline.

How you edit, compile and run your Java program is up to you. You are free to use any editor or
development environment. However, you need to ensure that your program compiles and runs
correctly on the student servers.

The test cases used to mark your submissions will be different from the sample tests given. You should
test your program extensively to ensure it is correct for other input values with the same format as the
sample tests.
Submit your program to the student servers a couple of days before the deadline to ensure that
they work (you can still improve your program). “I can’t get my code to work on the student
server but it worked on my local machine” is not an acceptable.

c©The University of Melbourne 2020, v1.9 16

9 Certification of Individual Work

Note well that this project is your final assessment, so cheating is out of the question. Any form of
material exchange, whether written, electronic or any other medium is considered cheating, and so is
the soliciting of help from electronic newsgroups. Providing undue assistance is considered as serious
as receiving it, and in the case of similarities that indicate exchange of more than basic ideas, formal
disciplinary action will be taken for all involved parties. A sophisticated program that undertakes deep
structural analysis of Java code identifying regions of similarity will be run over all submissions in “com-
pare every pair” mode.

By submitting your work on the server you certify that the work submitted was done
independently and without unauthorized aid.

Cheating is not worth it. Trust me, it never is.

In the name of the entire teaching team, we wish you all the best for your submission and sincerely
hope you enjoy working on this coding challenge. You have all come a long way!

c©The University of Melbourne 2020, v1.9 17

