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EE5904/ME5404 Neural Networks: Homework #2 
Important note: the due date is 26/02/2023. You should submit your scripts to the 
folder in CANVAS. Late submission is not allowed unless it is well justified. Please 
include the MATLAB code as attachment if computer experiment is involved. 
 
Q1. Rosenbrock's Valley Problem (10 Marks) 
Consider the Rosenbrock's Valley function: 

 
which has a global minimum at (x,y) = (1,1) where f(x,y) = 0.  Now suppose the 
starting point is randomly initialized in the open interval (0, 0.5) for x and y, find the 
global minimum using: 
a). Steepest (Gradient) descent method  
 

with learning rate η = 0.001. Record the number of iterations when f(x,y) converges 

to (or very close to) 0 and plot out the trajectory of (x,y) in the 2-dimensional space. 
Also plot out the function value as it approaches the global minimum. What would 

happen if a larger learning rate, say η = 0.2, is used? 

                  (5 Marks) 
b). Newton's method (as discussed on page 13 in the slides of lecture Four)  
 
Record the number of iterations when f(x,y) converges to (or very close to) 0 and plot 
out the trajectory of (x,y) in the 2-dimensional space. Also plot out the function value 
as it approaches the global minimum. 
                  (5 Marks) 
 
Q2. Function Approximation (20 Marks) 
Consider using MLP to approximate the following function: 

 ,  for [ 1,1]x∈ − . 

The training set is generated by dividing the domain [-1, 1] using a uniform step 
length 0.05, while the test set is constructed by dividing the domain [-1, 1] using a 
uniform step length 0.01. You may use the MATLAB neural network toolbox to 
implement a MLP (see the Appendix for guidance) and do the following experiments: 
 
a). Use the sequential mode with BP algorithm and experiment with the following 
different structures of the MLP: 1-n-1 (where n = 1,2,...,10, 20, 50). For each 
architecture plot out the outputs of the MLP for the test samples after training and 
compare them to the desired outputs. Try to determine whether it is under-fitting, 
proper fitting or over-fitting.  Identify the minimal number of hidden neurons from 
the experiments, and check if the result is consistent with the guideline given in the 
lecture slides. Compute the outputs of the MLP when x=-3 and +3, and see if the 
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MLP can make reasonable predictions outside of the domain of the input limited by 
the training set.  
                                                             (7 Marks) 
b). Use the batch mode with trainlm algorithm to repeat the above procedure. 
  (7 Marks) 
c). Use the batch mode with trainbr algorithm to repeat the above procedure.  
  (6 Marks) 
 
Q3. Scene Classification (40 Marks) 
Multi-layer perceptron (MLP) can be used to solve real-world pattern recognition 
problems. In this assignment, MLP will be designed to handle a binary classification 
task, i.e. nature scenes vs. man-made scenes. Specifically, students are divided into 4 
groups based on matric numbers and each group is assigned with different dataset as 
illustrated in the following Table. 
 
Group ID Nature Scenes [1] Man-Made Scenes [0] 

1 

 
Open Country 

 
Highway 

2 

 
Mountain 

 
Street 
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3 

 
Coast 

 
Inside City 

4 

 
Forest 

 
Tall Building 

 
You may download the zipped dataset (e.g. group_1.zip) from CANVAS. After 
unzipping, you will find two folders: train and test. The training set consists of around 
500 images and test set consists of around 165 images. Filename of each image 
follows the format of “imageID_label_category.jpg” (e.g. 0001_0_highway.jpg), 
where ‘label’ is either 1 or 0 indicating the image captures a nature scene or 
man-made scene; ‘category’ represents the human-readable class name of this image. 
 
In order to find your group, you need to calculate “mod(LWD, 4) + 1” where LWD is 
the last two digits of your matric number, e.g. A1234567X is assigned to group 
mod(67, 4) + 1 = 4 (Forest vs. Tall Building). 
 
Please specify the group ID that has been assigned to you! Take note that if you 
have selected wrongly, there will be some mark deduction! 
 
All the images are provided in grayscale format with size 256*256. You can use I = 
imread(filename) to read these image files, where filename specifies the path to an 
image (you may use function dir() to get the filenames of images inside a folder for 
code efficiency). The returned value I is an array (256-by-256 in this assignment) 
containing the image data. For example, 

I = imread(‘group_1/train/0001_0_highway.jpg’); 
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will read image ‘0001_0_highway.jpg’ from the training set into MATLAB 
workspace. Then, you could display this image using: 

imshow(I, []); 
In order to efficiently process all the image data, you may need to convert the matrix 
form data I into a vector by: 

V = I(:); 
and the resulting V is a column vector whose elements are taken column-wisely from 
I. You could group all the training images together using train_images = [V1, V2, 
…] and all the test images together following the same way. In the next, these 
matrixes (of size (256*256-by-image_number)) are used as input to the networks. 
 
The label information is stored in the filename of each image and can be extracted by: 

tmp = strsplit(‘0001_0_highway.jpg’, {'_', '.'}); 
L(i)= str2num(tmp{2}); 

where L is an array (of size (1-by-image_number)) with each element holding the 
ground-truth label of corresponding image. 
 
You are required to complete the following tasks: 
 

a) Apply Rosenblatt’s perceptron (single layer perceptron) to the dataset of your 
assigned group. After the training procedure, calculate the classification 
accuracy for both the training set and test set, and evaluate the performance of 
the network.  

(8 Marks) 
b) The original input dimension is 65536 (256*256), which may be redundant 

and contain space for reduction. Try to naively downsample the images into 
128*128, 64*64, 32*32, or apply a more sophisticated technique like PCA to 
these images. Then, retrain the perceptron in a) with these dimensionally 
reduced images and compare their performance. (you may use imresize() and 
processpca() or pca() in this task) 

(6 Marks) 
c) Apply MLP to the dataset of your assigned group using batch mode training. 

After the training procedure, calculate the classification accuracy for both the 
training set and test set, and evaluate the performance of the network. 

(10 Marks) 
d) Please determine whether your trained MLP in c) is overfitting. If so, please 

specify when (i.e. after which training epoch) it becomes overfitting. Try 
weights regularization and observe if it helps. (you may set the regularization 
strength by ‘performParam.regularization’) 

(3 Marks) 
e) Apply MLP to the dataset of your assigned group using sequential mode 

training. After the training procedure, calculate the classification accuracy for 
both training set and test set, and evaluate the performance of the network. 
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Compare the result to part c), and make your recommendation on the two 
approaches. 

(10 Marks) 
f) Try to propose a scheme that you believe could help to improve the 

performance of your MLP and please explain the reason briefly.  
(3 Marks) 

 
Important note: There are many design and training issues to be considered when 
you apply neural networks to solve real world problems. We have discussed most of 
them in the lecture four. Some of them have clear answers, some of them may rely on 
empirical rules, and some of them have to be determined by trial and error. I believe 
that you will have more fun playing with these design parameters and making your 
own judgment rather than solving the problem with a prescribed set of parameters. 
Hence, there is no standard answer to this problem, and the marking will be based 
upon the whole procedure rather than the final classification accuracy. (Use “help” 
and “doc” commands in MATLAB to get familiar with the functions that you don’t 
know and Google everything that confuses you.) 
 

Appendix 
1. Create a feed-forward back propagation network using MATLAB toolbox using: 

net = patternnet(hiddenSizes, trainFcn, performFcn) 
where the arguments are specified as follows: 
 hiddenSizes -- Row vector of one or more hidden layer sizes (default = 10); 
 trainFcn -- Training function (default = 'trainscg'); 
 performFcn -- Performance function (default = 'crossentropy'). 
 
trainFcn specifies the optimization algorithm based on which the network is updated 
during training, and there are many choices: 
 
• Backpropagation training functions that use Jacobian derivatives (these algorithms 

can be faster but require more memory than gradient backpropation): 
 

trainlm -- Levenberg-Marquardt backpropagation. 
trainbr -- Bayesian Regulation backpropagation. 
 

• Backpropagation training functions that use gradient derivatives (these algorithms 
may not be as fast as Jacobian backpropagation): 

 
    trainbfg -- BFGS quasi-Newton backpropagation. 
    traincgb -- Conjugate gradient backpropagation with Powell-Beale restarts. 
    traincgf --Conjugate gradient backpropagation with Fletcher-Reeves updates. 
    traincgp -- Conjugate gradient backpropagation with Polak-Ribiere updates. 
    traingd -- Gradient descent backpropagation. 
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    traingda -- Gradient descent with adaptive lr backpropagation. 
    traingdm -- Gradient descent with momentum. 
    traingdx -- Gradient descent w/momentum & adaptive lr backpropagation. 
    trainoss -- One step secant backpropagation. 
    trainrp -- RPROP backpropagation. 

trainscg -- Scaled conjugate gradient backpropagation. 
 

performFcn specifies the cost/objective function that measures the performance of 
network during training, and there are many choices: 
 

mae -- Mean absolute error performance function. 
mse -- Mean squared error performance function. 
sae -- Sum absolute error performance function. 
sse -- Sum squared error performance function. 
crossentropy -- Cross-entropy performance. 
msesparse -- Mean squared error performance function with L2 weight and 
sparsity regularizers. 
 

It is very difficult to know which training function and performance function 
guarantee the best performance for a given problem. It depends on many factors, 
including the complexity of the problem, the number of samples in training set, the 
number of weights and biases in the network, and whether the network is being used 
for pattern recognition or function approximation (regression), etc. You are 
encouraged to try different training functions and compare their performance. 
 
The following example shows how to design a pattern recognition network to classify 
iris flowers. 

[x,t] = iris_dataset; 
net = patternnet(10); 
net = train(net, x, t); 
view(net) 
y = net(x); 
perf = perform(net, t, y); 
classes = vec2ind(y); 
 

More details about patternnet() can be found by typing ‘help patternnet’ and ‘doc 
patternnet’ in MATLAB command line. 
 
2. Different training functions have different parameters which are stored in 
‘net.trainParam’. For example, the function parameters for ‘traincgf’ are 
 

Show Training Window Feedback --     showWindow: true 
Show Command Line Feedback --  showCommandLine: false 
Command Line Frequency --        show: 25 



 7 

Maximum Epochs --        epochs: 1000 
Maximum Training Time --        time: Inf 
Performance Goal --           goal: 0 
Minimum Gradient --        min_grad: 1e-06 
Maximum Validation Checks --       max_fail: 6 
Sigma --            sigma: 5e-05 
Lambda --           lambda: 5e-07 
 

Similarly, the parameter of performance functions are stored in ‘net.performParam’. 
For example, the function parameters for ‘crossentropy’ are 
 

Regularization Ratio --       regularization: 0 
Normalization --       normalization: 'none' 

 
The choosing of these parameters are task-dependent. You can keep the default values 
since they could guarantee a moderate performance; however, in order to achieve a 
better performance, you are encouraged modify these parameters based on your 
tasks. 
 
3. You can train the network using MATLAB toolbox: 

[net, tr] = train(net, X, T) 
where the input arguments are 

net --Network 
X -- Network inputs 
T -- Network targets (default = zeros) 

and returns 
net -- Newly trained network 
tr -- Training record (epoch and perf) 

More details about train() can be found by typing ‘help train’ and ‘doc train’ in 
MATLAB command line. 
 
4. After training, the weights in the hidden neurons are stored in the ‘net’ object. For 
example, for the same problem mentioned above, after training, type ‘net’ in the 
command line of MATLAB, you may obtain the following message: 
net = 
 

Neural Network 
  
            name: 'Pattern Recognition Neural Network' 
          userdata: (your custom info) 
  

dimensions: 
  
         numInputs: 1 
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         numLayers: 2 
        numOutputs: 1 
    numInputDelays: 0 
    numLayerDelays: 0 
 numFeedbackDelays: 0 
 numWeightElements: 10 
        sampleTime: 1 
  

connections: 
  
       biasConnect: [1; 1] 
      inputConnect: [1; 0] 
      layerConnect: [0 0; 1 0] 
     outputConnect: [0 1] 
  

subobjects: 
  
             input: Equivalent to inputs{1} 
            output: Equivalent to outputs{2} 
  
            inputs: {1x1 cell array of 1 input} 
            layers: {2x1 cell array of 2 layers} 
           outputs: {1x2 cell array of 1 output} 
            biases: {2x1 cell array of 2 biases} 
      inputWeights: {2x1 cell array of 1 weight} 
      layerWeights: {2x2 cell array of 1 weight} 
  

functions: 
  
          adaptFcn: 'adaptwb' 
        adaptParam: (none) 
          derivFcn: 'defaultderiv' 
         divideFcn: 'dividerand' 
       divideParam: .trainRatio, .valRatio, .testRatio 
        divideMode: 'sample' 
           initFcn: 'initlay' 
        performFcn: 'crossentropy' 
      performParam: .regularization, .normalization 
          plotFcns: {'plotperform', plottrainstate, ploterrhist, 
                    plotconfusion, plotroc} 
        plotParams: {1x5 cell array of 5 params} 
          trainFcn: 'trainscg' 
        trainParam: .showWindow, .showCommandLine, .show, .epochs, 
                    .time, .goal, .min_grad, .max_fail, .sigma, 
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                    .lambda 
  

    weight and bias values: 
  
                IW: {2x1 cell} containing 1 input weight matrix 
               LW: {2x2 cell} containing 1 layer weight matrix 
                 b: {2x1 cell} containing 2 bias vectors 
  

methods: 
  
              adapt: Learn while in continuous use 
           configure: Configure inputs & outputs 
            gensim: Generate Simulink model 
               init: Initialize weights & biases 
           perform: Calculate performance 
               sim: Evaluate network outputs given inputs 
              train: Train network with examples 
              view: View diagram 
        unconfigure: Unconfigure inputs & outputs 
  

evaluate:       outputs = net(inputs) 
 
You may use ‘net.LW’ and ‘net.b’ to check the detailed values of weights and biases. 
Besides, all the information of the trained network is stored in the object ‘net’. You 
may type ‘doc’ command to open the help manual and search for ‘net’ (network 
properties) to find more details. 
 
5. The ‘train()’ function mentioned above provides batch learning mode only. In order 
to enable the sequential/incremental learning mode, please refer to  
http://www.mathworks.com/help/nnet/ug/neural-network-training-concepts.html 
The most important step is to make sure that the inputs are presented as a cell array of 
sequential vectors. 
A sample MATLAB code for sequential training is as follows: 
 
function [ net, accu_train, accu_val ] = train_seq( n, images, labels, 

train_num, val_num, epochs ) 

% Construct a 1-n-1 MLP and conduct sequential training. 

% 

% Args: 

%   n: int, number of neurons in the hidden layer of MLP. 

%   images: matrix of (image_dim, image_num), containing possibly  

%           preprocessed image data as input. 

%   labels: vector of (1, image_num), containing corresponding label of 

%           each image. 

http://www.mathworks.com/help/nnet/ug/neural-network-training-concepts.html
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%   train_num: int, number of training images. 

%   val_num: int, number of validation images. 

%   epochs: int, number of training epochs. 

% 

% Returns: 

%   net: object, containing trained network. 

%   accu_train: vector of (epochs, 1), containing the accuracy on training 

%               set of each eopch during trainig. 

%   accu_val: vector of (epochs, 1), containing the accuracy on validation 

%               set of each eopch during trainig. 

  

  

    % 1. Change the input to cell array form for sequential training 

    images_c = num2cell(images, 1); 

    labels_c = num2cell(labels, 1); 

     

    % 2. Construct and configure the MLP 

    net = patternnet(n); 

     

    net.divideFcn = 'dividetrain';  % input for training only 

    net.performParam.regularization = 0.25;  % regularization strength 

    net.trainFcn = 'traingdx';  % 'trainrp' 'traingdx' 

    net.trainParam.epochs = epochs; 

     

    accu_train = zeros(epochs,1);  % record accuracy on training set of 

each epoch 

    accu_val = zeros(epochs,1);  % record accuracy on validation set of 

each epoch 

     

    % 3. Train the network in sequential mode 

    for i = 1 : epochs 

         

        display(['Epoch: ', num2str(i)]) 

         

        idx = randperm(train_num);  % shuffle the input 

         

        net = adapt(net, images_c(:,idx), labels_c(:,idx)); 

         

        pred_train = round(net(images(:,1:train_num)));  % predictions on 

training set 

        accu_train(i) = 1 - mean(abs(pred_train-labels(1:train_num))); 

     

        pred_val = round(net(images(:,train_num+1:end)));  % predictions 

on validation set 
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        accu_val(i) = 1 - mean(abs(pred_val-labels(train_num+1:end))); 

         

    end 

  

end 

 
You can copy this .m file into your folder and modify it according to your task. 


