
ECS 154A: Homework 4

Logisim

1. Use the version from the class Google Drive of Logisim Evolution. Other versions may

not work correctly.

2. Do not rename the files you receive. If you do so you will automatically fail the tester

when you submit.

3. Put your solution for each problem into implementation subcircuit

4. Do not rename the implementation subcircuit anything else. If you do so you will

automatically fail the tester when you submit.

5. Do not change the appearance of the implementation subcircuit from what it is set as.

Doing so will cause you to automatically fail the tester when you submit.

a. That is this field right here

6. Do not move the pins inside of the implementation subcircuit as that affects the

appearance of the circuit on the outside as you saw in discussion. Doing so will cause

you to automatically fail the tester when you submit.

a. If you want to “move the pins” instead connect tunnels to the pins and move the

tunnels around.

7. Do not name any of the subcirucits in your solution main. Doing so will cause you to

automatically fail the tester when you submit.

8. You can create as many other subcircuits as you want in your solution. Just make sure

your solution ends up in the implementation subcircuit

https://drive.google.com/file/d/14uDb89VUd5yopoxduOR2lzd34VD3auQH/view?usp=sharing

Restrictions

For all problems in this homework, you may only use

● All of the components under Wiring

● All of the components under Gates EXCEPT for Controlled Buffer, Controlled Inverter,

PLA

● All of the components under Plexers

● All of the components under Arithmetic

● All of the components under Memory EXCEPT for RAM, ROM, and Random Generator

Unless a problem specifies otherwise.

You have been provided a Register File circuit in the starting circuit. The only outputs of the

register file that you are allowed to use are A_Out and B_Out. The rest are for testing purposes

and should not be used. Using them will result in a 50% penalty in your grade.

Problem 1: CPU.circ (100 points)

Build a 4-bit single cycle CPU that can implement the given instructions.

Instruction Format

Our CPU will be using fixed length instructions. Our CPU will also have two types of instruction

formats: R-type and I-type. In R-type instructions both operands come from registers. In I-type

instructions, the first operand comes from a register and the second will be contained within the

instruction.

R-Type

Name Bits Description

OpCode 15 - 12 Determines what operation should be
performed

C 11 - 8 The destination register. The C in
RegC = RegA OP RegB

A 7 - 4 The first source register. The A in
RegC = RegA OP RegB

B 3 - 0 The second source register. The B in
RegC = RegA OP RegB

I-Type

Name Bits Description

OpCode 15 - 12 Determines what operation should be
performed

C 11 - 8 The destination register. The C in
RegC = RegA OP Imm

A 7 - 4 The first source register. The A in
RegC = RegA OP Imm

Immediate 3 - 0 The second source register. The Imm
in RegC = RegA OP Imm

Instructions

Operation Encoding (The value in the
OpCodeField)

Description

STOP 0000 The CPU ceases execution

NOP 0001 Do nothing

LOAD 0010 RegC = Immediate

MOVE 0011 RegC = RegA

ANDR 0100 RegC = RegA AND RegB

ANDI 0101 RegC = RegA AND Immediate

ORR 0110 RegC = RegA OR RegB

ORI 0111 RegC = RegA OR Immediate

XORR 1000 RegC = RegA XOR RegB

XORI 1001 RegC = RegA XOR Immediate

NOT 1010 RegC = NOT RegA

NEGATE 1011 RegC = -RegA

ADDR 1100 RegC = RegA + RegB

ADDI 1101 RegC = RegA +Immediate

SUBR 1110 RegC = RegA - RegB

SUBI 1111 RegC = RegA - Immediate

Inputs

Pin Size (in bits) Explanation

Instruction 16 The instruction located at
Instruction_Address

ClkIn 1 The Clock. Connect this to
the clock ports of your
registers/flip-flops. Do nothing
else with this.

Outputs

Pin Size (in bits) Explanation

Instruction_Address_Out 5 The address of the instruction
you want to execute

Reg0-15 4 The values in the register file.
This has already been
connected for you

CPU Components

Your CPU should have

● A Program Counter (PC)

○ This stores and keeps track of what instruction you are on

● Instruction Decoder

○ This is a bunch of combinational logic that sets the control signals inside of your

CPU

● Register File

○ A bunch of registers as well as ways to specify which ones you want. This has

already been created for you.

○ The only outputs of the register file that you are allowed to use are A_Out and

B_Out. The rest are for testing purposes and should not be used. Using them

will result in a 50% penalty in your grade.

Testing

Testing for this problem is different than for previous assignments but is more similar to

sequential circuits than combinational circuits. After you finish building your circuit and are ready

to test it

1. Open the associated grader circuit

2. Scroll down on the left and side until you find your circuit. Right-click on it and select

Reload Library

a.
3. Use cntrl+t to tick the clock and check that the outputs of the registers are what they are

supposed to be as based on the test program below.

The Test Program

Instruction Meaning Result

LOAD REG0, 3 Reg0 = 3 Reg0 = 3

LOAD REG1,6 Reg1 = 6 Reg1 = 6

NOP Do Nothing No Change

MOVE REG2, Reg1 Reg2 = Reg1 Reg2 = 6

ANDR REG3, REG0, REG1 REG3 = REG0 AND REG1 REG3 = 3 & 6 = 2

ANDI REG4, REG3,3 REG4 = REG3 AND 3 REG4 = 2 & 3= 2

ORR REG5, Reg2, REG0 REG5 = Reg2 OR REG0 REG5 = 6 |3 = 7

ORI REG6, Reg3, 12 REG6 = Reg3 OR 12 REG6 = 2 OR 12 = 14

XORR REG7, Reg2, REG0 REG7 = Reg2 XOR REG0 REG7 = 6 ^ 3 = 5

XORI REG8, Reg6, 15 REG8 = Reg6 XOR 15 REG8 =14 ^15 = 1

NEG REG9, REG3 REG9 = -REG3 REG9 = -2

ADDR REG10, Reg7, REG7 REG10 = Reg7 + REG7 REG10 = 5 + 5 = 10

ADDI REG11, Reg1, 3 REG11 = Reg1 + 3 REG11 = 6 + 3 = 9

SUBR REG12, Reg6, REG2 REG12 = Reg6 - REG2 REG12 = 14 - 6 = 8

SUBI REG13, Reg8, 5 REG13 = Reg8 - 5 REG13 = 1 - 5 = -4

NOT REG15, REG8 REG15 = NOT REG8 REG15 = ~1 = 14

ANDR REG1, REG12, REG13 REG1 = REG12 AND REG13 REG1 = 8 & 12 = 8

NEG REG5, REG5 REG5 = -REG5 REG5 = -7

NOP Do Nothing No Change

ADDR REG14, REG5, REG2 REG14 = Reg5 + REG2 REG14 = -7 + 6 = -1

XORR REG7, REG7, REG14 REG7 = Reg7 ^ REG14 REG7 = 5 ^ -1 = 10

ORI REG2, REG2, 3 REG2 = Reg2 | 3 REG2 = 6 | 3 = 7

SUBI REG13, REG13, 12 REG13 = REG13 - 12 REG13 = 12 - 12 = 0

STOP CPU should cease execution CPU should cease execution

LOAD REG15, 13 This line should not be
executed because the CPU
should have STOPped
already

This line should not be
executed because the CPU
should have STOPped
already

The test program is just an example program. Your CPU should function on any program

given to it.

Making Fixes to Your Solution

After you make changes to your solution you will need to reload your circuit in the grader circuit.

If you don’t it won’t see the updates. To reload your circuit, select your circuit in the grader,

right-click it and select Reload Library.

Submitting

Submit to

Logisim Homework 3 on GradeScope.

What to Submit

Submit a zip file that contains the following .circ files

1. CPU.circ

Inside of each .circ file leave a comment with you and your partner’s names.

Make sure that you submit a zip that contains the files and NOT the folder containing the files.

Check out the animation below for what to submit.

