

1

Homework 6: Server-side Scripting using Python Flask,
JSON and Stocks API

1. Objectives

● Get experience with Python programming language and Flask framework.
● Get experience creating web pages using HTML, CSS, JavaScript, DOM, JSON format and

XMLHttpRequest object.
● Get experience with Tiingo Stocks API and newsapi.org’s News API
● Getting hands-on experience in GCP, AWS or Azure.

1.1 Cloud Exercise

● The backend of this homework must be implemented in the cloud on GCP, AWS or Azure
using Python.

● See homework 5 for installation of either one of these platforms. You only have to select
one platform to implement your backend.

● See the hints in section 3; a lot of reference material is provided to you.
● For Python and Flask kick-start, please refer to the Lecture slides on the class website.
● You must refer to the grading guidelines, the video, the specs and Piazza. Styling will be

graded and the point’s breakup is mentioned in the grading guidelines.

● The link for the video is - https://youtu.be/1vOis6BxYq4

2. Description

In this exercise, you are asked to create a webpage that allows you to search for stock information
using the Tiingo Stock API, and the results will be displayed in both tabular format and charts format
using HighCharts. You will also provide news articles for the selected stock using the News API.

2.1. Description of the Search Form

The user first opens a web page as shown below in Figure 1, the initial search page, where he/she can
enter a stock ticker symbol. Providing a value for the “Stock Ticker Symbol” field is mandatory.

Figure 1: Initial search page

2

The search form has two buttons:

1. Search button:
Once the user has provided valid data (a stock ticker is required), and clicked on the Search
button, your front-end JavaScript script will make a request to your web server providing it
with the form data that was entered (the ticker symbol). You must use GET to transfer the
form data to your web server (do not use POST, as you would be unable to provide a sample
link to your cloud services). A Python script using Flask will retrieve the data and send it to
the Tiingo Stocks API. You need to use the Flask Python framework to make all the API calls.

Using XMLHttpRequest or any other JavaScript calls for anything other than calling your
own “cloud” backend will lead to a 4-point penalty. Do not call the Tiingo Stocks API
directly from JavaScript.

Define routing endpoints and make your API call from the Python backend. The
recommended tutorial for Flask and more importantly, routing, can be found at the
following link: https://flask.palletsprojects.com/en/1.1.x/

If the user clicks on the Search button without providing a value in the field, an alert should
pop up “Please fill out this field” (an example is shown in Figure 2).

Figure 2: An Example of Empty Input alert

2. Clear button:
This button must clear the result area (below the search area) and the text field (stock ticker
symbol).

2.2 Displaying Results

In this section, we outline how to use the form data to construct the calls to the RESTful web services
of the Tiingo APIs, News API and display the results in the web page. There are basically four
components to display in a “tabs” from on the web page: Company Outlook, Stock Summary, Charts
and Latest News.

A sample result is shown in Figure 3.

3

Figure 3: A Sample Search Result for Apple Inc (AAPL)

2.2.1 Displaying Company Outlook Tab

We use the Tiingo “Meta Endpoint” API. Please refer to

https://api.tiingo.com/documentation/end-of-day

for more details on the API.

API Sample: https://api.tiingo.com/tiingo/daily/keyword?token=API_KEY

The process to create your API key is explained in section 3. When constructing the python request
required obtaining the Company Details, you need to provide two values in the URL:

1. The first value, the keyword, is the stock ticker the user entered in the form.
2. The second value, the token is your API_KEY that you create as described in section 3.

For example, to get information about AAPL, the stock ticker or Apple, you would call the API as:

https://api.tiingo.com/tiingo/daily/aapl?token=0108ecd7f84bf97f8f11998a4e4561bx51da92c8

The response of this Python request is a JSON-formatted object. Figure 4 shows a sample response
from the request. You need to parse this JSON object and extract some fields as required. The mapping
of the JSON response to the tabular data to be displayed on the screen is shown in Table 1.

Figure 4: Sample JSON response from Tiingo API’s metadata endpoint

Tabular Data Data from Tiingo Metadata API response JSON
Company Name The value of key “name”

Stock Ticker Symbol The value of key “ticker”

4

Stock Exchange Code The value of key “exchangeCode”
Company Start Date The value of key “startDate”

Description The value of key “description”. The description needs to be
truncated with an ellipsis (“triple dots”) so as to only span the

first FIVE lines.

Table 1: Mapping JSON data and company outlook display

After extracting the data, the data should be displayed in a tabular format. A sample output is shown
in Figure 5.

Figure 5: Example of Company Outlook Tab

2.2.2 Displaying Stock Summary Tab

We use the Tiingo “Current Top-of-Book & Last Price” API to fetch the stock information for the ticker.
Please refer to https://api.tiingo.com/documentation/iex for more details on the API.

API Sample: https://api.tiingo.com/iex/keyword?token=API_KEY

When constructing the python request required obtaining the Company Details, you need to provide
two values in the URL:

1. The first value, the keyword, is the stock ticker the user entered in the form.
2. The second value, the token is your API_KEY that you create as described in section 3.

For example, to get information about AAPL, the stock ticker or Apple, you would call the API as:

https://api.tiingo.com/iex/aapl?token=0108ecd7f84bf97f8f11998a4e4545ea51da92c8

The response of this Python request is a JSON-formatted object. Figure 6 shows a sample response
from the request. You need to parse this JSON object and extract some fields as required. The mapping
of the JSON response to the tabular data to be displayed on the screen is shown in Table 2.

5

Figure 6: Sample JSON response from Tiingo API’s Current Top-of-Book & Last Price endpoint

Tabular Data Data from Tiingo Current Top-of-Book & Last Price API response JSON
Stock Ticker Symbol The value of key “ticker”

Trading Day The value of the key “timestamp”. Truncate the value to just display the
date.

Previous Closing Price The value of key “prevClose”
Opening Price The value of key “open”

High Price The value of key “high”
Low Price The value of key “low”
Last Price The value of key “last”
Change Difference between the value of key “last” and “prevClose”.

Also display the upward arrow or downward arrow depending on whether
the difference value is positive or negative. Reference to the image links in

Section 3. Change = (last - prevClose)
Change Percent The Change Percent between the value of key “last” and “prevClose”.

Also display the upward arrow or downward arrow depending on whether
the difference value is positive or negative. Reference to the image in

Section 3. Change Percent = (Change / prevClose) * 100
Please refer to below link for formula:

https://www.skillsyouneed.com/num/percent-change.html
Number of Shares Traded The value of key “volume”

Table 2: Mapping JSON data and stock summary display

After extracting the data, the data should be displayed in a tabular format. A sample output is shown
in Figure 7.

6

Figure 7: Example of Stock Summary Information Tab

2.2.3 Displaying Stock Price/Volume Chart Tab

You should extract the content of Time Series Data from the returned JSON object to construct a chart
which is responsible for displaying (close) price/volume. The chart is provided by HighCharts. Find
more information about HighCharts at:

https://www.highcharts.com/demo

The historical data for the ticker can be obtained from Tiingo’s “Historical Intraday Prices Endpoint”
API.

Please refer to https://api.tiingo.com/documentation/iex for more details on the API.

API Sample:

https://api.tiingo.com/iex/keyword/prices?startDate=prior_date&resampleFreq=12hour&columns=o
pen,high,low,close,volume&token=API_KEY

When constructing the python request required obtaining the Company Details, you need to provide
5 values:

1. The first value, the keyword, is the stock ticker the user entered in the form.
2. The second value, the token is your API_KEY that you create as described in section 3.
3. The third value is the startDate, a prior date which should be 6 months prior to the current

date. You can use Python DateUtils’s “relativedelta” to calculate the date. Please refer to
https://dateutil.readthedocs.io/en/stable/relativedelta.html for more details.

4. The fourth value, columns, indicates what you want returned: open, high, low and close
prices and volume.

5. The fifth value, resampleFreq, indicates in hours the resampling frequency. See the Tiingo
documentation for allowed values.

For example, to get information about AAPL Historical Intraday Prices, you would call the API as:

7

https://api.tiingo.com/iex/aapl/prices?startDate=2020-03-
04&resampleFreq=12hour&columns=open,high,low,close,volume&token=0108ecd7f84bf97f8f1199
8a4e4561ea51da92c8

The response of this Python request is a JSON-formatted object. Figure 8 shows a sample response
from the request. You need to parse this JSON object and extract some fields as required.

Figure 8: Sample JSON response from Tiingo API’s Historical Intraday Prices Endpoint

The data obtained from the API can then be mapped to the HighCharts dataset using the mapping
below.

Chart Data Data from Tiingo Historical Intraday Prices API response
JSON

Date The value of key “name”
Stock Price The value of key “close”

Volume The value of key “volume”

Table 3: Mapping JSON data and HighCharts data

For mapping the Stock price data to data for HighCharts, create an array of data points (x1, y1)
where x1 will be the date(in UTC format) and y1 will be the corresponding close stock price for that
day. This array will then act as an input dataset for your HighCharts. Please refer to links in Section 3
for more details.

Similarly create another array of points (x2, y2) where x2 will be the date (also in UTC format) and y1
will be the volume for that day. This array will be the second input for your HighCharts. Since you will
be plotting Stock Price vs Date and Volume vs Date you will have two different datasets and two y-
axis and a single x-axis.

8

Initially, the chart shows the historical stock price (in blue line with filling the area below, two digits
after decimal) and volume (in grey bar) for the past six months by an interval of one day. Figure 9
shows an example of the Stock Price/Volume chart.

Figure 9: An Example of Chart showing Stock Price/Volume for 6 months

The title of the chart for showing price/volume is “Stock Price <Ticker> (YYYY-MM-DD)”, where
“YYYY-MM-DD” is today’s date. The subtitle of the chart should be “Source: Tiingo” and should
hyperlink to the Tiingo website: https://api.tiingo.com/. The title of the Y-axis is “Stock Price” when
showing the stock price and the other Y-axis is “Volume”.

The X-axis changes on the basis of the zoom level 6 months, 3 months, 1 month, 15 days, and 7 days.
Please refer to Section 3 for references on how to change the chart data on the basis of the zoom
level. Figure 10 shows an example of the Stock Price/Volume chart for 15 days zoom level.

Figure 10: An Example of Chart showing Stock Price/Volume for 15 days

2.2.4 Displaying Stock News Tab

To display news for the company, we should use the stock ticker symbol from the form data to
construct a Python request to the News API and display the results in your page. Please refer to
https://newsapi.org/docs for more details.

API Sample: https://newsapi.org/v2/everything?apiKey=API_KEY&q=keyword

梁司其

梁司其

9

When constructing the python request required obtaining the News articles, you need to provide two
values:

1. The first value is your apiKey, which you created as described in section 3.
2. The second value, q, is the stock ticker the user entered in the form.

The response of this Python request is a JSON-formatted object. Figure 11 shows a sample response
from the request. You need to parse this JSON object and extract some fields as required. Only the
articles that have title, url, urlToImage and publishedAt keys present with a non-empty value
should be displayed. If any attribute is missing, empty or blank, do not display it in the
results. Display the first five articles from the response which have all the keys and values present
as mentioned.

Figure 11: Sample JSON response from News API’s Endpoint

The mapping between the information populated in the results and the JSON object is
shown in Table 4.

Card Data Data from News API JSON response
Image The value of key “urlToImage”
Title The value of key “title”
Date The value of key “publishedAt”

Link to Original Post The value of key “url”
Table 4: Mapping between result card and JSON object

After extracting the data, it should be displayed as shown in Figure 12. The “See Original Post”
hyperlink opens the original post in a new tab in the browser.

梁司其

梁司其

梁司其

10

Figure 12: Example of Latest News

2.2.5 Displaying Error Message

If the Tiingo API service returns an Invalid Call error message, the page should display “Error : No
record has been found, please enter a valid symbol.” Figure 13 shows an example when searching for
non-existent stock symbol “xyz”.

Figure 13: Search Result when there is no matching result

2.3 Saving Previous Inputs

In addition to displaying the results, the page should maintain the entered value while displaying the
current result. For example, if a user searches for “AAPL”, the user should see what was provided in
the search form when displaying the results. Specifically, when clicking on the Search button, the page
should display the result retrieved from the Tiingo API service and keep the value provided in the
search form.

11

12

3. Hints

3.1 Tiingo API Documentation

To apply for an API key on Tiingo and read the API documentation, please go to:

https://api.tiingo.com/.

Click on the Sign-up button. Enter your Username, your @usc.edu E-mail address, select and
confirm a Password, and click on Sign-up. Verify your account and go to

https://api.tiingo.com/account/api/token

to get your API_KEY.

3.2 Image References

Regarding the marker icon rendered beside the values of Change, Change Percent, a red-down arrow
icon is displayed if the value is negative while a green-up arrow icon is displayed if the value is
positive. The icons can be found at:

https://csci571.com/hw/hw6/images/GreenArrowUp.jpg

https://csci571.com/hw/hw6/images/RedArrowDown.jpg

3.3 Deploy Python file to the cloud (GAE/AWS/Azure)

You should use the domain name of the GAE/AWS/Azure service you created in HW #5 to make the
request. For example, if your GAE/AWS/Azure server domain is called example.appspot.com or
example.elasticbeanstalk.com or example.azurewebsites.net, the following links will be generated:

GAE - http://example.appspot.com/index.html
AWS - http://example.elasticbeanstalk.com/index.html
Azure - http://example.azurewebsites.net/index.html

The example subdomain in the above URLs will be replaced by your choice of subdomain from the
cloud service. You may also use a different page than index.html.

3.4 How to get News API Key

To apply for an API Key for newsapi.org, go to https://newsapi.org/docs.

Click on the “Get API key” button. You should fill out the form as shown in Figure 14. Click Submit.
The API Key (News API key) will be displayed. Copy this key as you will use it in all the News API calls.

13

Figure 14: Google News Register for API Key Form

3.5 References for HighCharts

1. https://api.highcharts.com/highstock/
2. https://www.highcharts.com/demo/stock/intraday-area
3. https://www.highcharts.com/demo/stock/compare

4. Files to Submit

In your course homework page, you should update the Homework 6 link to refer to your new initial
web search page for this exercise (for example, index.html). Your files must be hosted on GAE, AWS
or Azure cloud service. Graders will verify that this link is indeed pointing to one of the cloud services.

IMPORTANT:

● All discussions and explanations in Piazza related to this homework are part of the homework
description and grading guidelines. So please review all Piazza threads, before finishing the
assignment. If there is a conflict between Piazza and this description and/or the grading
guidelines, Piazza always rules.

● You should not use JQuery or Bootstrap for Homework 6.
● You should not call any of the APIs directly from JavaScript, bypassing the Python proxy.

Implementing any one of them in JavaScript instead of Python will result in a 4-point penalty.

