Peeking Blackjack

Stanford C$221 Spring 2018
Owner CA: Anna Wang

Version: 1

General Instructions

This (and every) assignment has a written part and a programming part.

The full assignment with our supporting code and scripts can be downloaded as blackjack zip.

a. 4 This icon means a written answer is expected in blackjack. pdf.

b. This icon means you should write code in submission.py.

You should modify the code in submission.py between
BEGIN_YOUR_CODE

and
END_YOUR_CODE

but you can add other helper functions outside this block if you want. Do not make changes to files other than submission.py.

Your code will be evaluated on two types of test cases, basic and hidden, which you can see in grader.py. Basic tests, which are fully
provided to you, do not stress your code with large inputs or tricky corner cases. Hidden tests are more complex and do stress your
code. The inputs of hidden tests are provided in grader. py, but the correct outputs are not. To run the tests, you will need to have
graderUtil.py in the same directory as your code and grader.py. Then, you can run all the tests by typing

python grader.py

This will tell you only whether you passed the basic tests. On the hidden tests, the script will alert you if your code takes too long or
crashes, but does not say whether you got the correct output. You can also run a single test (e.g., 2a-8-basic) by typing

python grader.py 3a-8-basic

We strongly encourage you to read and understand the test cases, create your own test cases, and not just blindly run grader.py.

The search algorithms explored in the previous assignment work great when you know exactly
the results of your actions. Unfortunately, the real world is not so predictable. One of the key
aspects of an effective Al is the ability to reason in the face of uncertainty.

Markov decision processes (MDPs) can be used to formalize uncertain situations. In this
homewaork, you will implement algorithms to find the optimal policy in these situations. You will
then formalize a modified version of Blackjack as an MDP, and apply your algorithm to find the
optimal policy.

Problem 1: Value lteration

In this problem, you will perform the value iteration updates manually on a very basic game just to solidify your intuitions about solving
MDPs. The set of possible states in this game is {-2, -1, 0, 1, 2} You start at state 0. and if you reach either -2 or 2, the game ends. At
each state, you can take one of two actions: {-1, +1}.

If you're in state & and choose -1:

« You have an 60% chance of reaching the state s — 1.
« You have a 40% chance of reaching the state s + 1.

If you're in state & and choose +1:

« You have a 20% chance of reaching the state s + 1.
« You have a 80% chance of reaching the state s — 1.

If your action results in transitioning to state -2 then you receive a reward of 20_ If your action results in transitioning to state 2, then
your reward is 100. Otherwise, your reward is -5. Assume the discount factor yis 1.

a ¢ [3 points] Give the value of P;pt [s) for each state g after 0, 1, and 2 iterations of value iteration. Iteration 0 just
initializes all the values of V to 0. Terminal states do not have any optimal policies and take on a value of 0.

b. # [3 points] What is the resulting optimal policy mopt for all non-terminal states?

Problem 2: Transforming MDPs

Let's implement value iteration to compute the optimal policy on an arbitrary MDP. Later, we'll create the specific MDP for Blackjack.

a [3 points] If we add noise to the transitions of an MDP, does the optimal value always get worse? Specifically, consider
an MDP with reward function Reward(s, a,), states States, and transition function T'(s, a, 8'). Let's define a new

MDFP which is identical to the original, except that on each action, with probability % we randomly jump to one of the
states that we could have reached before with positive probability. Formally, this modified transition function is:

1 1 1
THo.a. 8= —Tls.a. 84 = - :
(%:4,%) 2 Sl 2 |{s":T(s,a,s") > 0}

Let V7 be the optimal value function for the original MDP, and V5 the optimal value function for the modified MDP. Is it
always the case that V) (Sstart) = Va(Sstart)? If S0, prove it in blackjack.pdf and put return none for each of the code
blocks. Otherwise, construct a counterexample by filling out CounterexampleMDP iN submission.py.

b. # [3 points] Suppose we have an acyclic MDP for which we want to find the optimal value at each node. We could run
value iteration, which would require multiple iterations -- but it would be nice to be more efficient for MDPs with this
acyclic property. Briefly explain an algorithm that will allow us to compute I—fjpt for each node with only a single pass

over all the (s, a, s') triples.

c. # [3 points] Suppose we have an MDP with states States a discount factor v < 1, but we have an MDP solver that only
can solve MDPs with discount 1. How can leverage the MDP solver to solve the original MDP?

Let us define a new MDP with states States’ = States U {0}, where ois a new state. Let's use the same actions (
Actions’(s) = Actions(s)), but we need to keep the discount ¥’ = 1. Your job is to define new transition
probabilities T"'(s, a, ') and rewards Reward'(s, a, s) in terms of the old MDP such that the optimal values Vopt(s)
for all 8 € States are the equal under the original MDP and the new MDP.

Hint: If you're not sure how to approach this problem, go back to Percy's notes from the first MDP lecture and read
closely the slides on convergence, toward the end of the deck.

Problem 3: Peeking Blackjack

Now that we gotten a bit of practice with general-purpose MDP algorithms, let's use them to play (a modified version of)
Blackjack. For this problem, you will be creating an MDP to describe states, actions, and rewards in this game.

For our version of Blackjack, the deck can contain an arbitrary collection of cards with different face values. At the start of
the game, the deck contains the same number of each cards of each face value; we call this number the 'multiplicity’. For
example, a standard deck of 52 cards would have face values [1, .S 13] and multiplicity 4. You could also have a deck

with face values [1, 3, 20]; if we used multiplicity 10 in this case, there would be 30 cards in total (10 each of 1s, 5s, and
20s). The deck is shuffled, meaning that each permutation of the cards is equally likely.

The game occurs in a sequence of rounds. Each round, the player either (i) takes the next card from the top of the deck
(costing nothing), (ii) peeks at the top card (costing peekcost, in which case the next round, that card will be drawn), or (iii)
quits the game. (Note: it is not possible to peek twice in a row; if the player peeks twice in a row, then succindProbReward()
should return [].)

The game continues until one of the following conditions becomes true:

o The player quits, in which case her reward is the sum of the face values of the cards in her hand.

o The player takes a card and "goes bust”. This means that the sum of the face values of the cards in her hand is strictly
greater than the threshold specified at the start of the game. If this happens, her reward is 0.

o The deck runs out of cards, in which case it is as if she quits, and she gets a reward which is the sum of the cards in
her hand.

In this problem, your state s will be represented as a 3-element tuple:

(totalCardValueInHand, nextCardIndexIfPeeked, deckCardCounts)

As an example, assume the deck has card values [1? X 3] with multiplicity 1, and the threshold is 4_ Initially, the player has
no cards, so her total is 0; this corresponds to state (e, wone, (1, 1, 1)). Atthis point, she can take, peek, or quit.

o If she takes, the three possible successor states (each of which has equal probability of 1/3) are:

(1, None, (@, 1, 1})
(2, None, (1, @, 1))
(3, None, (1, 1, @))

She will receive a reward of O for reaching any of these states. (Remember, even though she now has a card in her
hand for which she may receive a reward at the end of the game, the reward is not actually granted until the game
ends.)

o |f she peeks, the three possible successor states are:

(8, & (1. 1. 1))
- T R G W IR
(e, X, (3,1, 3))

She will receive (immediate) reward -peekcost for reaching any of these states. Things to remember about the states
after a peek action:

= The useris only guaranteed to take that card if they choose to "take" in the next round. The user can still quit or
peek again.

= From (e, e, (1, 1, 1)), taking a card will lead to the state (1, Hone, (@, 1, 1)) deterministically.

= The second element of the state tuple 15 not the face value of the card that will be drawn next, but the index into
the deck (the third element of the state tuple) of the card that will be drawn next. In other words, the second
element will always be between 0 and len(deckCardCounts)-1, INClusive.

o |f she quits, then the resulting state will be (8, wone, none). (Remember that setting the deck to nene signifies the end
of the game.)

As another example, let's say the player's current state is (2, Neone, (1, 1, 8)), and the threshold remains 4.
o If she quits, the successor state will be (2, Hone, None).

o If she takes, the successor states are (2 + 1, None, (8, 1, @8)) Or (3 + 2, None, Mone). Note that in the second
successor state, the deck is set to none to signify the game ended with a bust. You should also set the deck to none If
the deck runs out of cards.

a. [10 points] Implement the game of Blackjack as an MDP by filling out the succandProbReward() function of
class BlackjackMDP.

b. [4 points] Let's say you're running a casino, and you're trying to design a deck to make people peek a lot.
Assuming a fixed threshold of 20, and a peek cost of 1, design a deck where for at least 10% of states, the
optimal policy is to peek. Fill out the function peekingMpr() to return an instance of Blackjackmor where the
optimal action is to peek in at least 10% of states.

Problem 4: Learning to Play Blackjack

So far, we've seen how MDP algorithms can take an MDP which describes the full dynamics of the game and return an
optimal policy. But suppose you go into a casing, and no one tells you the rewards or the transitions. We will see how
reinforcement learning can allow you to play the game and learn its rules & strategy at the same timel

a. [6 points] You will first implement a generic Q-learning algorithm QLearningAlgorithm, which is an instance of
an rLalgorithm. As discussed in class, reinforcement learning algorithms are capable of executing a policy
while simultaneously improving that policy. Look in simulate(), in util.py t0o see how the rLAlgorithm will be
used. In short, your QLearningalgorithm Will be run in a simulation of the MDF, and will alternately be asked
for an action to perform in a given state (QLearningilgorithm.getaction), and then be informed of the result
of that action (QLearningAlgorithm.incorporateFeedback), soO that it may learn better actions to perform in the
future.

We are using Q-learning with function approximation, which means C}Dpt(s, a) =w-¢(s,a), where in

code, W is self.weights, ¢ is the featureExtractor function, and Qﬂpt IS self.getQ.

We have implemented QLearningAlgorithm.getAction s a simple e-greedy policy. Your job is to implement
QLearningAlgorithm. incorporateFeedback(), which should take an (s,a, . 3’} tuple and update
self.weights according to the standard Q-learning update.

b. # [4 points] Now let's apply Q-learning to an MDP and see how well it performs in comparison with value
iteration. First, call simulate using your Q-learning code and the identityFeatureExtractor() on the MDP
smallMDP (defined for you in submission.py), with 30000 trials. How does the Q-learning policy compare with
a policy learned by value iteration {i.e., for how many states do they produce a different action)? (Don't forget
to set the explorationProb of your Q-learning algorithm to 0 after learning the policy.) Now run simulate() On
largerpe, again with 30000 trials. How does the policy learned in this case compare to the policy learmned by
value iteration? What went wrong?

L [points] To address the problems explored in the previous exercise, let's incorporate some domain
knowledge to improve generalization. This way, the algorithm can use what it has learned about some states
to improve its prediction performance on other states. Implement blackjackFeatureExtractor as described in
the code comments. Using this feature extractor, you should be able to get pretty close to the optimum on
the largeMDP.

d. # [4 points] Sometimes, we might reasonably wonder how an optimal policy leamned for one MDP might
perform if applied to another MDP with similar structure but slightly different characteristics. For example,
imagine that you created an MDP to choose an optimal strategy for playing "traditional” blackjack, with a
standard card deck and a threshold of 21. You're living it up in Vegas every weekend, but the casinos get
wise to your approach and decide to make a change to the game to disrupt your strategy: going forward, the
threshold for the blackjack tables is 17 instead of 21. If you continued playing the modified game with your
original policy, how well would you do? (This is just a hypothetical example; we won't look specifically at the
blackjack game in this problem.)

To explore this scenario, let's take a brief look at how a policy learned using value iteration responds to a
change in the rules of the MDP.

= First, run value iteration on the eriginalMpr (defined for you in submission.py) to compute an optimal
policy for that MDP.

= Next simulate your policy on newThresholdMDP {also defined for you in submission.py) by calling
simulate with an instance of FixedrLAlgorithm that has been instantiated using the policy you
computed with value iteration. What is the expected reward from this simulation? Hint: read the
documentation (comments) for the simulate function in util.py, and look specifically at the format of the
function’s return value.

= MNow try simulating Q-learning directly on newThresholdMor instead. What is your expected reward under
the new Q-learning policy? Provide some explanation for how the rewards compare, and why they are
different.

https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2suemlw
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svc3VibWlzc2lvbi5weQ==
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svc3VibWlzc2lvbi5weQ==
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svc3VibWlzc2lvbi5weQ==
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svZ3JhZGVyLnB5
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svZ3JhZGVyLnB5
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svZ3JhZGVyVXRpbC5weQ==
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svZ3JhZGVyLnB5
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svZ3JhZGVyLnB5
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svc3VibWlzc2lvbi5weQ==
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svdXRpbC5weQ==
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svc3VibWlzc2lvbi5weQ==
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svc3VibWlzc2lvbi5weQ==
https://getfireshot.com/pdf_aHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L2NsYXNzL2FyY2hpdmUvY3MvY3MyMjEvY3MyMjEuMTE4Ni9hc3NpZ25tZW50cy9ibGFja2phY2svc3VibWlzc2lvbi5weQ==

