COMP9444 Neural Networks and Deep Learning
Term 3, 2019

Project 1 - Gradient Descent and PyTorch

Due: Sunday 27 October, 23:59 pm
Marks: 16% of final assessment

This assignment 1s divided into three parts:

» DPart 1 contains simple PyTorch questions designed to get vou started and familiar with the automarking environment
» Part 2 involves creating a single-laver Neural Network (1.e. linear model) in NumPy, without using PvTorch.
» Part 3 involves implementing specific network structures to recognize handwritten Japanese Hiragana characters.

Provided Files

Copy the archive hwl.zip into your own filespace and unzip 1t. This should create a directory hwl with two subdirectories: src and dats. Then type:

cd hwl/src

You will see three skeleton files partl.py, part2.py and part2.py.

Your task 1s to complete these files according to the specifications in this document, as well as in the comments in the files themselves. Each file contains functions or classes marked Topo: which correspond to the marking scheme shown below. This document contains general information for

each task, with in-code comments supplving more detail. Each task in this assignment is sufficiently specified to have only one correct answer (although there may be multiple ways to implement it). If vou feel a requirement is not clear vou may ask for additional information on the FAQ, or the
course forum.

Marking Scheme

All parts of the assignment will be automarked. Marks for each task are shown 11 brackets in the following table. Wote that no partial marks are assigned.

Part 1: 1.[0.5] simple addition
. [0.3] simple reshape
[0.5] simple_flat

. [0.53] simple_transpose

=l

. [0.5] simple permute
. [0.53] simple dot product
- [0.3] simple_matrix mul

. [0.5] broadcastable_matrix_mul

=R e« B I = AL

. [0.5] simple concatenate

10. [0.53] stmple_stack

=

Part 2:

Part 3:

[1]
[1]
[1]
[1]
[2]
[1]
[1]
[1]

Activation
Forward Pass
Loss

Error
Backward Pass
View Batch
Loss
FeedForward

[2] CNN

When vou submit vour files through give, simple submission tests will be run to test the functionality of part 1, and to check that the code you have implemented 1n parts 2 and 3 1s in the correct format. After submissions have closed, we will run the final marking scripts, which will assign marks
for each task. We will not release these final tests, however vou will be able to see basic information outlining which sections of code were incorrect (if vou do not receive full marks) when vou view vour marked assignment.

Setting up your development environment

If vou plan to write and debug the assignment on a Unix-based laptop, the following commands mayv help vou to install the necessary software. Note that the exact commands mayv vary, based on vour system.

1. Create a new virtual environment:

conda create -n COMP2444 python=3.7

[

. Activate it
conda activate COMPSO444
3. Install pytorch:
conda install pytorch torchvision cpuonly -c pytorch
4. Install everything else:

conda install tgqdm matplotlib

Another option for development 1z Google Colabs, which is a free service from Google that allows development in hosted notebooks that are able to connect to GPU and TPU (Googles custom NN chip - faster than GPUs) hardware runtimes. If you are having trouble getting PyTorch setup you

might also want to consider this option, as the hosted environments have PyTorch preinstalled. More information and a good getting started guide 1s here. It 1s important to note this 1s just an option and not something required by this course - some of the tutors are not familiar with colabs and will
not be able to give troubleshooting advice for colab-specific 1ssues. If vou are 1n doubt, develop locally.

Part 1 [5S marks]

For Part 1 of the assignment, vou should work through the file partl.py and add functions where specified.

Part 2 [6 marks]

For Part 2, vou will develop a linear model to solve a binary classification task on two dimensional data. The file data/binary_clsssification data.pkl contains the data for this part. We have included the file used to generate the data as data_generator.py. You may examine this for vour

reference, or modify it if vou wish to watch Gradient Decent take place on different data. Note that running this file will replace the pickle file with another stochastically generated dataset. This shouldn't cause your solution to fail, but it will cause the final output image to appear different. It 1s
good to check that vour file works with the original pickle file provided.

The file part2.py is the one vou need to modify. It contains a skeleton definition for the custom LinearModel class. You need to complete the appropriate functions in this class.

You may modify the plotting method during development (LinsarModel.plot(}) - it may help vou to visualize additional information. Prior to submission, however, verify that the expected output 18 being produced with the original, unaltered, code.

When completed, a correct implementation should produce the following image, along with model accuracies at each training step printed to stdout:

Data and decision boundary

1.50 1

1254

1.00 1

0.75

x2
0.50 18

0.25

0.00 -

~0.23

0.25

050 075 1.00 125 1.50

%1

Example output from a correctly implemented Part 2.

-0.50 -0.25 0.00

This shows the provided datapoints, along with the decision boundary produced by your model at each step during training (dotted green lines). You can see that the data i1s not linearly separable, however the optimal separating plane 1s still found. For this data and model, it 15 impossible to achieve
100% accuracy, and here only 92% or 94% 15 achieved (with one point lving verv close to th houndary).

Task 1 - Activation Function

Implement a sigmoid activation function. It 15 good practice when developing with deep learning models to constrain your code as much as possible, as the majority of errors will be silent and 1t 1s very easy to introduce bugs. Passing incorrectly shaped tensors into a matrix multiplication, or
example, will not appear as on error, but will instead broadcast. For this reason, vou must ensure that the activation method raises a ValueError with an appropriate error message if a list. boolean, or numpy array is passed as input. Ensure that singular numpy tvpes (such as numpy . floats4) can be
handled.

Weights and other variables should be implemented as numpy arravs, not lists. This 1s good practice in general when the size of a sequence 1s fixed.

Task 2 - Forward Pass

Implement the forward pass of the model following the structure specified. In other words, given an iput, return the output of the model.

Task 3 - Loss

Implement the cross entropy loss function for the learning algorithm to minimize See function docstring for more information.

Task 4 - Error

Implement an error function to return the difference between target and actual output

Task 5 - Backward Pass

Here vou are required to implement gradient descent without using pyvtorch or autograd. Although this 1s difficult in general, we have tried to make it easier in this case by sticking to a single-laver network and making use of other simplifications (see function docstring for details).

Part 3 [S marks]

Here vou will be implementing networks to recognize handwritten Hiragana symbols. The dataset to be used 1s Kuzushiji-MNIST or EMNIST for short. The paper describing the dataset 1s available here It 1s worth reading, but in short: significant changes occurred to the language when Japan

reformed their education system in 1868, and the majority of Japanese today cannot read texts published over 130 vears ago. This paper presents a dataset of handwritten, labeled examples of this old-style script (Kuzushiji). Along with this dataset, however, they also provide a much simpler one,
containing 10 Hiragana characters with 7000 samples per class. This 1s the dataset we will be using.

K L § B

= 4 2o b

A Leg »®

P A R

b ¥ ¥ & L

&' L b g

= &% 3 ~MEP

T 43 T OB

- 1 b L L8 . l

g W T o

g0 4 0

[sﬁ..}'_

E 2 D b

A L &g T

g s N

v @ 5

L & & 31

: in W & M E &
EFa AT I R

Text from 1772 (left) compared to 1900 showing the standardization of written Japanese.

A large amount of code has been provided for vou. You should spend time understanding this code. A simple model has also been provided for vour reference that should make the other tasks easier. It 13 a good 1dea to use the same structure provided in this model in the code you write. The model

1s a linear model very sunilar to what yvou implemented 1n Part 1, with all inputs mapped directly to 10 ReLU activated nodes. Note that 1t 1s not identical to the model in Part 1 - do not try to reverse engineer Part 1 from this model. Technically the activation function here 1s redundant - however
we have included 1t as an example of how to make use of torch.nn.functional.

When run, part3.py will train three models (one provided, two yvou will implement). a Linear Network, Feed Forward network, and a Convolutional Network, for 10 epochs each. A full run of part3.py can take up to an hour - however during development it 15 a good idea to train for fewer epochs
initially, until vou observe roughly correct behaviour

A correct run over all epochs should produce the following plot:

KMMIST
0.8 1
o 0.6
(%]
@ R [Ll
= il——
o
m
904
'—
0.2 1
—— Linear
—— FeedForward
0.0 - — CMN
0 2 4 G 8 10
Epoch

Output plot for Part 3. On this dataset, learning occurs very fast, with a large amount occurring in one epoch. The increasing capacity and corresponding performance of each network type is clearly visible.

Contraints

1. Do not use torch.nn.Sequential, mstead use torch.nn.functional to setup vour network. An example of a linear net 1s present.

]

. In this assignment, all code will run on a CPU, regardless of which version of pytorch 1s installed. You may set code to run on a GPU during development if vou wish to speed up training (although this wont make a big difference for this assignment), but ensure vou do not have . cuda() or
.to() calls in the code you submait.

3. Shuffling in the Dataloader has been set to off for testing purposes - 1n practice this would be set to True. Do not modify this.

e

. Do not modify the tramming and testing code {exception: you may wish to comment out the code displaving the sample images. This code 1s marked with the comment # Can comment the below out during development).

LA

. Do not change the names of files.

. Naming: Standard convention 1s to name fully connected layers fc1, fc2 etc, where the number indicates depth. Similarly for convolutional layers, convl, conv2 should be used.

Task 1 - View Batch

Whenever developing deep learning models, it 1s absolutely critical to begin with a complete understanding of the data vou are using. For this reason, implement a function that returns an 8x8 tiling of a batch of 64 images produced by one of the dataloaders, and the corresponding labels in a
numpy array. Once implemented correctly, vou should see he image shown below when running part3.py.

N 2R EEY
NS P g

50

75 1

100

125 m ks :
150 A | ﬂ-&-’
175 A
200 -

200
First batch of images from KMNIST tiled in 8x8 grid, produced by a correct view batch

You should also see the following printed to stdout:

[[B7@14243]
[Li51@57 6]
[1 785737 5]
[66 276809 6]
[L5958@e 8]
[86 77 7 81 9]
[6@ 51113 2]
[26435546]]

Note that there are no part marks for a partially correct network structure. Do not assume inputs have been flattened prior to being fed into the forward pass.

Task 2 - Loss

Implement a correct loss function (MMModel.lossfn). You may (and should) make calls to PyTorch here. See the comment for further information.
Task 3 - FeedForward Network

Implement a feedforward network according to the specifications in the accompanving docstring.

Task 4 - Convolutional Network

Implement a convolutional network according to the specifications in the accompanving docstring.

Submission

You should submit by typing

give cs9444 hwl partl py part2 py part3 py

You can submit as many times as you like - later submissions will overwrite earlier ones. You can check that vour submission has been received by using the following command:

9444 classrun -check

The submission deadline is Sunday 27 October, 23:39. 15% penalty will be applied to the (maximum) mark for every 24 hours late after the deadline.

Additional information may be found in the FAQ and will be considered as part of the specification for the project. You should check this page regularly.

General advice

1. We will be using PyTest to automatically grade submissions. While vou don't have to write vour own tests, doing so will allow yvou be sure certain sections are implemented correctly. You can use any tooling you would like for this. Make sure not to submit vour test files.

]

. It 1s possible to have the correct output when running the files with incorrect or incomplete implementations that will not receive full marks. You should rigorously test vour code based on the specifications listed here, as well as within the provided file.

. Try not to over-engineer a solution. In general, most of the methods that are required to be implemented can be done in a few lines. If vou find vourself writing = 50 lines of code, you are almost certainly off track. Step back and rethink what 1s really requared.

e

. Address the failing tests in order - if there 1s something preventing vou're model from being loaded, this will also cause all subsequent tests to fail. Once the model 1s loaded successfully, these other tests may pass.

LA

. Ensure that you are passing submission tests early, as if a submission cannot be run, it will receive 0 marks for that part. There will be no special consideration given in these cases. Automated testing marks are final "I uploaded the wrong version at the last minute” 1s not a valid excuse for a
remark. For this reason, ensure you are in the process of uploading vour solution at least 2 hours before the deadline. Do not leave this assignment to the last minute, as it 1s likely that close to the deadline, the wait time on submission test results will increase.

EXTRA CHALLENGE: You might find 1t interesting to trv Part 3 on the full dataset. This contains manv additional challenges such as class imbalances that will need to be addressed. For good accuracy vou will also need a much more complex network (1.e. 10's of hidden lavers - a good starting
point is a Resnet architecture). There 1s no extra marks for this_ but if vou get something interesting going please come to the consultations and show one of the tutors, or email the course admin (alex. longfunsw.edu. au).

Plagiarism Policy

Group submissions will not be allowed for this assignment. Your program must be entirely vour own work. Plagiarism detection software will be used to compare all submissions pairwise and serious penalties will be applied, particularly in the case of repeat offences.

DO NOT COPY FROM OTHERS; DO NOT ALLOW ANYONE TO SEE YOUR CODE

Please refer to the UNSW Policy on Academic Integrity and Plagiarism if vou require further clarification on this matter.

Good luck!

https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3NlLnVuc3cuZWR1LmF1L35jczk0NDQvMTlUMy9odzEvaHcxLnppcA==
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3NlLnVuc3cuZWR1LmF1L35jczk0NDQvMTlUMy9odzEvaHcxL3NyYy8=
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3NlLnVuc3cuZWR1LmF1L35jczk0NDQvMTlUMy9odzEvaHcxL2RhdGEv
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cubWFya3RlY2hwb3N0LmNvbS8yMDE5LzA2LzA5L2dldHRpbmctc3RhcnRlZC13aXRoLXB5dG9yY2gtaW4tZ29vZ2xlLWNvbGxhYi13aXRoLWZyZWUtZ3B1Lw==
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3NlLnVuc3cuZWR1LmF1L35jczk0NDQvMTlUMy9odzEvaHcxL2RhdGEv
https://getfireshot.com/pdf_aHR0cHM6Ly9hcnhpdi5vcmcvcGRmLzE4MTIuMDE3MTgucGRm
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3NlLnVuc3cuZWR1LmF1L35jczk0NDQvMTlUMy9odzEvZmFxLnNodG1s
https://getfireshot.com/pdf_aHR0cHM6Ly9zdHVkZW50LnVuc3cuZWR1LmF1L3BsYWdpYXJpc20=

