

 COP4600

Ex8: Networking

Overview
This exercise serves as a brief introduction to TCP servers and the network toolset. In this activity, you will create

a “wall” application, in which a single user can connect in order to “tag” (leave a message on) the wall. Wall

programs were common in the days of Bulletin Board Systems (BBSs) before other Internet services became

popular. As connections were made via telephone hardline dial-up, only one user could connect at a time, so the

“wall” program served as a community board:

As text mode screens are generally 25 rows and 80 columns, a limited number of wall messages can be held;

when the wall is “full”, the oldest message is removed from the message queue, and the new message is added to

the end (first-in-first-out).The server and client must communicate through a TCP socket (in C or C++) and must

compile and run on Reptilian. The wall’s state should be maintained even between connections. The netcat

command line utility should be used to test the server.

Specification
Your server will run as a standalone program from the command line and will use the protocol specified below.

Command Line Execution
The server program will take up to two parameters, optionally – the maximum number of messages stored and

the port. If not provided, the port should default to 5514, while the number of messages should default to 20:

$./wallserver
$./wallserver 30
$./wallserver 35 7777

Server Behavior
When a client connects, the server should send the wall’s contents and a prompt as shown below (Figure 2a).

If there are no message entries, it should instead send “[NO MESSAGES – WALL EMPTY]” (Figure 2b).

Wall Contents

Ted: Iron Maiden?
Bill: Excellent!
Liz: Look! I am a human doing human things! Just a completely normal human being

Figure 1. Example of a wall program’s contents

Wall Contents

Ted: Iron Maiden?
Bill: Excellent!
Liz: Look! I am a human doing human things!

Enter command: _

Figure 2a. Wall display with contents.

Wall Contents

[NO MESSAGES – WALL EMPTY]

Enter command: _

Figure 2b. Wall display without contents.

 Queue size 20, Port 5514

 Queue size 30, Port 5514

 Queue size 35, Port 7777

The server will accept four distinct commands – clear, post, kill, and quit. For commands that do not cause

the user to disconnect (kill and quit), the server should send the wall’s contents and prompt the user for an

additional command as shown in the example output.

clear
Clears the wall of all entries on the wall. In addition, the server

should send a message indicating that the wall has been cleared.

In addition, the server should send the wall’s contents to verify

that the wall has in fact been cleared out correctly.

post
Indicates the user wishes to tag the wall. The user should be

prompted for their name, followed by a message. The entire post

should not exceed 80 characters (including name and separator),

so the maximum length of the message should be indicated to the

users. If the message is too long, the server should display the

message “Error: message is too long!”; otherwise, it should

display “Successfully tagged the wall.”

If the wall is “full” (the number of messages stored has reached

the maximum), the oldest message (at the top) should be removed

from the wall to make room for the new message post. Following

the post attempt, the wall’s contents should be displayed and the

user prompted for the next command. An example (with queue

size 2) is shown on the right.

kill
Causes the server to shut down (terminate), and close the

socket, disconnecting the user.

quit
Displays a termination message and closes the client’s socket,

but does not shut down the server or clear the wall.

Debugging
It is recommended that students debug their server using the netcat command line utility (with alias nc). To

do so, run your server in one ssh session, then open another and run netcat:

Students are recommended to

Wall Contents

Jimmy Dean: Try my breakfast delights!

Enter command: post↵
Enter name: Johnny 5↵
Post [Max length 70]: I’m alive!!! ↵
Successfully tagged the wall.

Wall Contents

Jimmy Dean: Try my breakfast delights!

Enter command: post↵
Enter name: ~~~[[[[[[[[[[[THE PLAGUE]]]]]]]]]]]~~~↵
Post [Max length 40]: 12345678901234567890123456789012345678901↵
Error: message is too long!

Wall Contents

Jimmy Dean: Try my breakfast delights!
Johnny 5: I’m alive!!

Enter command: post↵
Enter name: Bobo↵
Post [Max length 74]: Hullo.↵
Successfully tagged the wall.

Wall Contents

Johnny 5: I’m alive!!
Bobo: Hullo.

Enter command: _

Enter command: clear↵
Wall cleared.

Wall Contents

[NO MESSAGES – WALL EMPTY]

Enter command: kill↵
Closing socket and terminating server. Bye!
$ _

Enter command: quit↵
Come back soon. Bye!
$ _

$./wallserver 2↵
Wall server running on port 5514 with queue size 2.

$ netcat localhost 5514 ↵
Wall Contents

Pigeon: You’ve got mail. Err, I mean, cooo. Coooo.

Enter command: quit↵
Come back soon. Bye!
$ _

Submissions
You will submit the following at the end of this exercise:

⚫ Compressed tar archive (ex8.tar.gz) for the server and its Makefile

⚫ Screenshot of netcat connecting to the server to show its function in detail (described below)

Compressed Archive (ex8.tar.gz)
Your compressed tar file should have the following directory/file structure:

ex8.tar.gz
 ex8.tar

 ex8 (directory)
 Makefile

 (Server source files)

To build the server program and run it, we will execute these commands:

$ tar zxvf ex8.tar.gz
$ cd ex8
$ make
$./wallserver [lines] [port]

Screenshot
Run the server with a message queue size of 5 and connect via netcat, running the following commands:

1) Post two messages successfully and one that fails due to being too long

2) Clear the server’s wall

3) Post to the wall again

4) Quit from the server

5) Reconnect to the server

6) Kill the server

7) Attempt to connect again to show that the server has terminated

You may use two screenshots if you cannot fit all the commands with a single capture.

Resources
https://linux.die.net/man/2/socket - documentation for a function that you’ll be getting comfortable with

https://www.unixfu.ch/use-netcat-instead-of-telnet/ - an http example using netcat

https://linuxhandbook.com/jobs-command/ - as an alternative to opening multiple terminals, you can keep the

server running in the background by learning how to manage jobs (not necessary to complete the exercise, but

may be interesting to students that like working in the terminal)

https://linux.die.net/man/2/socket
https://www.unixfu.ch/use-netcat-instead-of-telnet/
https://linuxhandbook.com/jobs-command/

