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Course Scheduling

Stanford CS221 Fall 2014-2015

Owner TA: Jiawei Yao
Note: grader.py only provides basic tests. Passing grader.py does not by any means guarantee full points.

a. Below are some revisions to the original version published on Oct. 27th. You should download [REQUIRED]
updates if your file is older than the specified update time. And scheduling.zip will always contain the latest
version.

b. Revision 3 (14PM, Nov. 4rd): [OPTIONAL] update util . py: check if two variables are the same when
adding a binary potential. re-download.

c. Revision 2 (12PM, Nov. 3rd): [OPTIONAL] fix util . py unable to parse MS&E courses. If you don't have
MS&E courses in your profile.txt, you don't have to re-download. Otherwise, please re-download.

d. Revision 1 (12PM, Oct. 29th): [REQUIRED] bug fix to util . py, please re-download.

e. / This icon means a written answer is expected in your writeup.pdf
f. EI This icon means a coded solution is expected in your submission.py

g. There will be a lot of reading in this assignment. Be patient. It's worth your time! :)

h. Start early. Ask questions. Have fun.

What courses should you take in a given quarter? Answering this
question requires balancing your interests, satisfying prerequisite

chains, graduation requirements, availability of courses; this can

be a complex tedious process. In this assignment, you will write a
program that does automatic course scheduling for you based on

your preferences and constraints. The program will cast the

course scheduling problem (CSP) as a constraint satisfaction

problem (CSP) and then use backtracking search to solve that :’,'
CSP to give you your optimal course schedule.

You will first get yourself familiar with CSP by doing warmup
exercises in Problem 0. In Problem 1, you will implement two of
the three heuristics you learned from the lectures that will make
CSP solving much faster. In problem 2, you will add a helper
function to reduce n-ary potentials to unary and binary potentials.
Lastly, in Problem 3, you will create the course scheduling CSP
and solve it using the code from previous parts.

Problem 0: Warmup

a. / Let's create a CSP. Suppose you have 7 light bulbs, where each light bulb i = 1, ..., n is initially off. You
) also have m buttons which control the lights. For each button j = 1, ... , m, we know the subset
T; C {1, ..., n} of light bulbs that it controls. When button j is pressed, it toggles the state of each light

bulb in 7; (For example, if 3e T} and light bulb 3 is off, then after the button is pressed, light bulb 3 will be
on, and vice versa).

Your goal is to turn on all the light bulbs by pressing a subset of the buttons. Construct a CSP to solve this
problem. Your CSP should have m variables and n constraints. For this problem only, you can use n-ary
constraints. Describe your CSP precisely and concisely.

b. / Let's consider a simple CSP with 3 variables and 2 binary potentials:
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where X1, X»>, X3 € {0,1} and 11, t, are XOR functions (that is #;(X) = x @xz and
H(X) = x2 P x3).

i. How many consistent assignments are there for this CSP?

ii. To see why variable ordering is important, let's use backtracking search to solve the CSP, without

using any heuristic. How many times will backtrack () be called if we use the fixed ordering
X1, X7, X3? What if the ordering is X, X3, X» ? (You should use the Backtrack algorithm from the
slides. The initial arguments are x = @, w = 1, and the original Domain.)

In the code, this will be BacktrackingSearch.numOperations.

ii. To see why lookahead can be useful, let's do it again with the ordering X, X3, X, and AC-3. How
many times will Backtrack be called?

C. Now let's consider a general case: given a factor graph with n variables X1, ..., X, and n — 1 binary
potentials 1, . . ., ,—1 where X; € {0, 1} and 7;(X) = x; € xi+1 - Note that the CSP has a chain

structure. Implement create chain csp( ) by creating a generic chain CSP with XOR as potentials.

Note: We've provided you with a CSP implementation in ut i1 . py which supports unary and binary
potentials. For now, you don't need to understand the implementation, but please read the comments and
get yourself familiar with the CSP interface. For this problem, you'll need to use

CSP.add variable() and CSP.add binary potential().

Problem 1: CSP solving

So far, we've only worked with unweighted CSPs, wherefj(x) € {0, 1}. In this problem, we will work with weighted CSPs,
which associates a weight for each assignment x based on the product of m potential functionsf1 Y e ,fm:

Weight(x) = [ ] ;)
i=1

J

where each potentialf].(x) > 0. Our goal is to find the assignment(s) x with the highest weight. As in problem 0, we will assume
that each potential is either a unary potential (depends on exactly one variable) or a binary potential (depends on exactly two
variables).

For weighted CSP construction, you can refer to the CSP examples we provided in util . py for guidance
(create map coloring csp() andcreate weighted csp()). You can try these examples out by running

python run pl.py

Notice we are already able to solve the CSPs, because in submission.py, a basic backtracking search is already
implemented. Recall that backtracking search operates over partial assignments and associates each partial assignment with a
weight, which is the product of all the potentials that depend only on the assigned variables. When we assign a value to a new
variable X;, we multiply in all the potentials that depend only on X; and the previously assigned variables. The function

get delta weight () returns the contribution of these new potentials based on the unaryPotentials and

binaryPotentials. Animportant case is when get delta weight () returns 0. In this case, any full assignment
that extends the new partial assignment will also be zero, so there is no need to search further with that new partial assignment.

Take a look at BacktrackingSearch.reset results() to see the other fields which are set as a result of solving

the weighted CSP. You should read submission.BacktrackingSearch carefully to make sure that you understand
how the backtracking search is working on the CSP.

a. |;| Let's create a CSP to solve the n-queens problem: Given an n X n board, we'd like to place n queens on
this board such that no two queens are on the same row, column, or diagonal. Implement

create nqueens csp( ) by adding n variables and some number of binary potentials. Note that
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the solver collects some basic statistics on the performance of the algorithm. You should take advantage of
these statistics for debugging and analysis. You should get 92 (optimal) assignments for n = 8 with exactly
2057 operations (number of calls to backtrack()).

Hint: If you get a larger number of operations, make sure your CSP is minimal.

b. |;| You might notice that our search algorithm explores quite a large number of states even for the 8 X 8
board. Let's see if we can do better. One heuristic we discussed in class is using most constrained variable
(MCV): To choose an unassigned variable, pick the X; that has the fewest number of values a which are

consistent with the current partial assignment (a for which get _delta weight () on X; = a returns

a non-zero value). Implement this heuristicin get unassigned variable () under the condition

self.mcv = True. It should take you exactly 1361 operations to find all optimal assignments for 8
queens CSP. — that's 30% fewer!

Note: in CSP and BacktrackingSearch we always use indices to represent variables and their

values. While the variable name can be any hashable object (for example int, str or tuple of hashable
elements), there's a unique index associated with it in a given CSP. For example, if we start with an empty

CSP and add a variable 'Victoria', its index will be 0 as it's the first variable added. Given the index
(0 for this case), you can get the actual variable name by accessing csp.varNames|[ 0] and get its

domain by accessing csp.valNames [ 0 ]. Similarly, a variable's value can be any object (not
necessarily hashable) and there's also a unique index associated with each value given a variable.

Suppose the previous variable 'Victoria' has three possible values [ 'red', 'green',
'blue' ], theindex for ' red' would be 0, the index for ' green ' would be 1 and so on. Whenever

you see var (for a variable) and val (for a value) in the code, they almost always are the indices,
not names.

Why do we do this? This is done for efficiency as accessing arrays is faster than accessing hash tables.
For example:

o csp.varNames[var ] gives you the variable name
o csp.valNames[var][val] gives you the val-th variable value
o csp.unaryPotentials[var][val] gives the unary potential value

o csp.binaryPotentials[varl][var2][vall][val2] gives the binary potential
value

o InBacktrackingSearch, assignment[var ] gives the index of assigned value

where varl and var2 are indices of variables and vall and valz2 are indices of their corresponding
values.

C. |;| The previous heuristics looked only at the local effects of a variable or value. Let's now implement arc
consistency (AC-3) that we discussed in lecture. After we set variable X; to value a, we remove the values

b of all neighboring variables X that could cause arc-inconsistencies. If X} 's domain has changed, we
use X} 's domain to remove values from the domains of its neighboring variables. This is repeated until no
domains have changed. Note that this may significantly reduce your branching factor, although at some
cost. In backtrack () we've implemented code which copies and restores domains for you. Your job is
tofillin arc_consistency check().

You should make sure that your existing MCV implementation is compatible with your AC-3 algorithm as
we will be using all three heuristics together during grading. With AC-3 enabled, it should take you 769
operations only to find all optimal assignments to 8 queens CSP — That is almost 45% fewer even
compared with MAC!

Take a deep breath! This part requires time and effort to implement — be patient.

Hint 1: documentation for CSP.add _unary potential() and

CSP.add binary potential () can be helpful.
Hint 2: although AC-3 works recursively, you may implement it iteratively. Using a queue might be a good
idea.
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Problem 2: Handling n-ary potentials

So far, our CSP solver only handles unary and binary potentials, but for course scheduling (and really any non-trivial
application), we would like to define potentials that involve more than two variables. It would be nice if we could have a general
way of reducing n-ary constraint to unary and binary constraints. In this problem, we will do exactly that for two types of n-ary
constraints.

Suppose we have boolean variables X, X;, X3, where X; represents whether the i-th course is taken. Suppose we want to
enforce the constraint that Y = X| vV X, vV X3 , that is, Y is a boolean representing whether at least one course has been

taken. In submission.py, the function get or variable( ) does such a reduction. It takes in a list of variables and a
target value, and returns a boolean variable with domain [ True, False ] whose value is constrained to the condition of

having at least one of the variables assigned to the target value. For example, we would call get or variable() with
arguments (X1, X», X3, True), which would return a new (auxiliary) variable X4 , and then add another constraint
[X4 = True].

The second type of n-ary potentials is constraints on the sum over n variables. You are going to implement reduction of this
type but let's first look at a simpler problem to get started:

a. / Suppose we have a CSP with three variables X, X», X3 with the same domain {0, 1,2} and a ternary
: constraint [X] + X» + X3 < 6] . How can we reduce this CSP to one with only unary and/or binary
constraints? Explain what auxiliary variables we need to introduce, what their domains are, what
unary/binary potentials you'll add, and why your scheme works. Add a graph if you think that'll better
explain your scheme.

Hint: draw inspiration from the example of enforcing [X; = 1 for exactly one i] which Percy did in the
lecture.

b. |;| Now let's do the general case in code: implement get sum variable( ), which takes in a sequence
of non-negative integer-valued variables and returns a variable whose value is constrained to equal the
sum of the variables. You will need to access the domains of the variables passed in, which you can

assume contain only non-negative integers. The parameter maxSum is the maximum sum possible of all
the variables. You can use this information to decide the proper domains for your auxiliary variables.

How do you use this? Suppose we wanted to enforce the constraint [X| + X, + X3 < K] . We would call

get sum variable() on(Xi, X2, X3) to get some auxiliary variable Y, and then add the constraint
[Y <K].

Problem 3: Course Scheduling

In this problem, we will apply your weighted CSP solver to the problem of course scheduling. We have scraped a subset of
courses that are offered this year from Stanford's Bulletin. For each course in this dataset, we have information on which
quarters it is offered, the prerequisites (which may not be fully accurate due to ambiguity in the listing), and the range of units

allowed. You can take a look at all the courses in courses. json. Please referto util.Course and
util.CourseBulletin for more information.

To specify a desired course plan, you would need to provide a profile which specifies your constraints and preferences for

courses. A profile is specified in a text file (see profile*.txt for examples). The profile file has four sections. The first
section specifies a fixed minimum and maximum (inclusive) number of units you need to take for each quarter. In the second

section, you register for the quarters that you want to take your courses in. For example, register Aut2013 would
sign you up for this quarter. The quarters need not to be contiguous, but they must follow the exact format XxxYYYY where
Xxx isone of Spr, Sum, Aut, Win and YYYY is the year. The third section specifies the list of courses that you've
taken in the past and elsewhere using the taken keyword. The the last section is a list of courses that you would like to take

during the registered quarters, specified using request. Not every course listed in request must appear in the generated
schedule. Conversely, a list of requests could potentially result in an infeasible schedule due to the additional constraints we will
discuss next.

To allow for more flexibility in your preferences, we allow some freedom to customize the requests. For instance, if you only
want to take exclusively one of several courses but not sure which one, then specify:

request CS229 or CS229A or CS229T

Note that these courses do not necessarily have to be offered in the same quarter. The final schedule can have at most one of
these three courses. Each course can only be requested at most once.
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If you want to take a course in one of a specified set of quarters, use the in modifier. For example, if you want to take one of
CS221 or CS229 in either Aut2013 or Sum2016, do:

request CS221 or CS229 in Aut2013,Sum2016

Another operator you can apply is after, which specifies that a course must be taken after another one. For example, if you
want to choose one of CS221 or CS229 and take it after both CS109 and CS161, add:

request CS221 or CS229 after CS109,CS161

Note that this implies that if you take CS221 or CS229, then you must take both CS109 and CS161. In this case, we say that
CS109 and CS161 are prereqs of this request. (Note that there's no space after the comma.) If you request course A and B
(separately), and A is an official prerequisite of B based on the CourseBulletin, we will automatically add A as a

prerequisite for B; that is, typing request B is equivalentto request B after A. Note thatif B is a prerequisite of A,
to request A, you must either request B or declare you've taken B before.

Finally, the last operator you can add is weight, which adds non-negative weight to each request. All requests have a default
weight value of 1. Requests with higher weight should be preferred by your CSP solver. Note that you can combine all of the
aforementioned operators into one as follows (again, no space after comma):

request CS221 or CS229 in Win2014,Win2015 after CS131 weight 5

In the code, we use the Request class to represent the requests. For example, the request above will be parsed to a
Request object with the following properties:

e cidsofvalue [ 'CS221"', 'CS229']

e quartersofvalue [ 'Win2014', 'Win2015']
e preregs ofvalue [ 'CS131"']

e weight ofvalue 5.0

It's important to note that a request does not have to be fulfilled, but if it is, the constraints specified by the various operators
after, in must also be satisfied.

You shall not worry about parsing the profiles because we have done all the parsing of the bulletin and profile for you, so all you

need to work with is the collection of Request objects in Profile and CourseBulletin to know when courses are
offered and the number of units of courses.

Well, that's a lot of information! Let's open a python shell and see them in action:

import util

# load bulletin

bulletin = util.CourseBulletin('courses.json')
# retrieve information of CS221

cs221 = bulletin.courses[ 'CS221"']

print cs221

# look at various properties of the course
print cs221l.cid

print c¢s221.minUnits

print cs221.maxUnits

print cs22l.prereqgs # the prerequisites
print cs22l.is_offered_in('Aut2014')

print cs22l.is_offered_in('Win2015")

# load profile from profile example.txt
profile = util.Profile(bulletin, 'profile example.txt')
# see what it's about
profile.print_info()
# iterate over the requests and print out the properties
for req in profile.requests:
print req.cids, reqg.quarters, req.prereqgs, req.weight

Your task is to take a profile and bulletin and construct a CSP. We have started you off with code in
SchedulingCSPConstructor that constructs the core variables of the CSP as well as some basic constraints. The
variables are all pairs of requests and registered quarters (request, quarter), and the value of such a variable is one
of the course IDs in that Request or None, which indicates none of the courses should be taken in that quarter. We will add

auxiliary variables later. We have also implemented some basic constraints: add_bulletin constraints( ), which
enforces that a course can only be taken if it's offered in that quarter (according to the bulletin), and

add norepeating contstraints/( ), which constrains that no course can be taken more than once.
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You should take a look at add _bulletin constraints() and add norepeating contstraints() togeta
basic understanding how the CSP for scheduling is represented. Nevertheless, we'll highlight some important details to make it
easier for you to implement:

e The existing variables are tuples of (req, quarter) where reqis a Request object (like the one shown above)
and quarter is a str representing a quarter (e.g. 'Aut2013"). For detail please look at
SchedulingCSPConstructor.add variables().

e The domain for req is the course IDs of the request plus None (e.g. [ 'CS221"', 'CS229', None]). When
red is None, this means no course is scheduled. Always remember to check if req is None.

e The domain for quarter is all possible quarters (self.profile.quarters,e.g. [ 'Win2014"',
'Win2015"'1]).

« Given a course ID cid, you can get the corresponding Course object by self.bulletin.courses[cid].

a. El Implement the add_quarter constraints/(). Thisis when your profile specifies which quarter(s)
you want your requested courses to be taken in. This does not saying that one of the courses must be
taken, but if it is, then it must be taken in any one of the specified quarters. Also note that this constraint will

apply to all courses in that request. We have written a verify schedule () functionin grader.py
that determines if your schedule satisfies all of the given constraints. Note that since we are not dealing

with units yet, it will print None for the number of units of each course.

b. |;| Let's add the weight potential in add request weights (). By default, all requests have a weight of
1 regardless whether it's satisfied or not. When a weight is explicitly specified, it should only contribute to
the final weight if one of the requested courses is in the solution. NOTE: Each grader test only tests the

function you are asked to implement. To test your CSP with multiple constraints you can use run_p3.py
and changing the constraints that you want to add.

C. |;| Let's now add the unit constraints in add unit constraints (). You must ensure that the sum of
units per quarter for your schedule are within the min and max threshold inclusive. You should use

get sum variable( ). In order for our solution extractor to obtain the number of units, for every

course, you must add a variable (courseId, quarter) tothe CSP taking on a value equal to the
number of units being taken for that course during that quarter. When the course is not taken during that
quarter, the unit should be 0.

Hint: If your code times out, your maxSum passed to get _sum_ variable( ) might be too large.

d. / Now try to use the course scheduler for the winter and spring (and next year if applicable). Create your own
) profile.txt and then run the course scheduler:

python run p3.py profile.txt

You might want to turn on the appropriate heuristic flags to speed up the computation. Does it produce a

reasonable course schedule? Please submit your profile.txt; we're curious how it worked out for
you!

Extra Credit: weighted CSPs with notable patterns (3 points)

Want more challenges about CSP? Here we go. :D

Suppose we have a weighted CSP with variables X1, ..., X;, with domains Domain; = {1, ..., K}. We have a set of basic
potentials which depend only on adjacent pairs of variables in the same way: there is some function g such that

f;(x) = g(xj, xi41) fori=1,...,n—1.In addition, we have a small set of notable patterns P, where eachp € P is a
sequence of elements from the domain.

Let 11, be the number of times that p occurs in an assignment x = (x1, ..., x,) as a consecutive sequence. Define the weight
n—1

of an assignment x to be Hfi(x) H }/"”. Intuitively, we multiply the weight by y every time a notable pattern appears.
i=1 peEP

For example, suppose n =4,y = 3, gla,b) = 2[a = b]+ 1[la # b] and P = {[1,3,3],[1, 2, 3]}. Then the assignment
x=11,3,3,2] hasweight2-3=6.
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a. / If we were to include the notable patterns as potentials into the CSP, what would be the worst case
* treewidth? (You can assume each p has a maximum length of n.)

b. / The treewidth doesn't really tell us the true complexity of the problem. Devise an efficient algorithm to
’ compute the maximum weight assignment. You need to describe your algorithm in enough detail but don't
need to implement it. Analyze your algorithm's time and space complexities. You'll get points only if your
algorithm is much better than the naive solution.
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