
CSE12 - Fall 2017 HW #1

Warm up, and some fun with Rock, Paper, Scissors

(100 points)

Due 11:59pm Friday, October 6

Useful Resources:
Throughout this assignment, you may find the following resources helpful. Refer to them
BEFORE posting questions on Piazza.

● Getting the starter code from Vocareum
● Submitting your assignment on Vocareum
● Connecting to the lab machines remotely
● Running bash on Windows
● Unix reference sheet
● Javadoc reference
● JUnit testing tutorial

Partner Policy:
You may work with a partner on this assignment using TRUE PAIR PROGRAMMING, as
described in the Pair Programming Policy for the course. If you work with a partner, you will
submit one set of code files and one PDF document with the written answers in parts 1 and 2.
Howevever, part 3 must be completed individually.

Provided Files:
Counter.java
countertest/CounterTest.java
Counter.pdf
RockPaperScissors.java

Files to Submit:
countertest/Counter.java
countertest/CounterTest.java
HW1-Answers.pdf
RockPaperScissors.java

Goal:
For you to become comfortable in the lab using and integrated development environment (e.g.
Eclipse) and the unix command line, gain familiarity with turnin procedures, learn some basics
of unit testing with JUnit, implement a few modest-sized programming problems using Arrays,
ArrayLists, LinkedLists and Iterators from the Java Collections Framework.

https://docs.google.com/a/eng.ucsd.edu/document/d/1L7ruD9ReTJc6m4aLoZypW-BHtTpAlL_UJGwmy9P1gys/edit?usp=sharing
https://sites.google.com/a/eng.ucsd.edu/cse-12-fall-2017/pair-programming-policy
https://www.tutorialspoint.com/junit/junit_environment_setup.htm
http://download.java.net/jdk7u2/docs/technotes/tools/solaris/javadoc.html#options
https://files.fosswire.com/2007/08/fwunixref.pdf
https://docs.google.com/document/d/14ogXpydVdZQnB_7vTc0745KHgaGQzbl2fxDXST5UHD4/edit?usp=sharing
https://docs.google.com/document/d/1t3w95EevOkQBWrsvx5nV-XYozCGP3T8G_sZbIeZKEao/edit?usp=sharinghttps://docs.google.com/document/d/1t3w95EevOkQBWrsvx5nV-XYozCGP3T8G_sZbIeZKEao/edit?usp=sharing
https://docs.google.com/document/d/1BGR3no9ogecRILVWJ28YpXXX5Sdlq3FSpfowc0kCCPo/edit?usp=sharing

Logistics:
In EACH AND EVERY FILE that you turn in, we need the following in comments at the top of
each file. These are essential so that we can more easily process your submissions and insure
that you receive proper credit. This is a very large class with about 400 students when
combining both lectures.

NAME(S): <your (and your partner’s) name>
ID(S): <your (and your partner’s) student ID>
EMAIL(S): <your (and your partner’s) email>

Turn in:
See the submission instructions in this document. You will need a Vocareum account for
submission, so if you have not received your login information, post on the appropriate post on
Piazza.
Getting Started

We strongly recommend that you work on the lab machines (in person or remotely--see
instructions here), but if you choose to work on your own machine, you can. Just make sure
your code runs correctly on Vocareum, as that is where we will be testing it. Lab accounts will
be set up sometime during week 1, hopefully no later than Wednesday. Instructions below
assume you are using the lab machines.

Create a subdirectory call “HW1” in your class account. All of your files should be placed
in that subdirectory. If you cannot remember how to create directories, refer to a unix tutorial or
reference sheet.

You will need to submit a pdf document named HW1-Answers.pdf. You can create this
document using any program that can create pdf files (e.g., MS Word (export to PDF), LaTeX,
Google Docs (export to PDF)). Create this document now inside your HW1 directory, place the
required comments at the top of the file, and save it as HW1-Answers. Remember, by the end
of the assignment you’ll need to save it as a PDF file in order to submit it.

Problem #0 (5 points)
1. First read and sign the Integrity of Scholarship agreement for CSE 12 here:

https://goo.gl/forms/0lJyCO3S2gHz8sgk1
You cannot earn any credit in CSE 12 until you have done so.

2. Next (for 2 points) fill out a short pre-survey here:
https://goo.gl/forms/gDthOq6mh8REkH5C2

3. For another 3 points, fill out a short pre-test. Important:
○ You need your quia account to take this quiz
○ Once you start the quiz by clicking on the link below, you MUST finish it in one

sitting. DO NOT use the back button, open a new tab or press enter. If you do
so you will lose your one attempt at this quiz. (Post on Piazza to reset your
attempt, but please try not to let this happen).

○ You will get your two points for any reasonable attempt at the quiz. However, do

https://goo.gl/forms/gDthOq6mh8REkH5C2
https://goo.gl/forms/0lJyCO3S2gHz8sgk1
https://files.fosswire.com/2007/08/fwunixref.pdf
http://www.ee.surrey.ac.uk/Teaching/Unix/
https://docs.google.com/a/eng.ucsd.edu/document/d/1t3w95EevOkQBWrsvx5nV-XYozCGP3T8G_sZbIeZKEao/edit?usp=sharing
https://docs.google.com/a/eng.ucsd.edu/document/d/1t3w95EevOkQBWrsvx5nV-XYozCGP3T8G_sZbIeZKEao/edit?usp=sharing
https://docs.google.com/a/eng.ucsd.edu/document/d/1BGR3no9ogecRILVWJ28YpXXX5Sdlq3FSpfowc0kCCPo/edit?usp=sharing

your best because this is a good indicator of how prepared you are for CSE 12.
○ The secret word for the quiz is ‘letsdothis’ (without the quotes).
○ Finally, here’s the link: http://www.quia.com/quiz/6502945.html

Problem #1 (30 points)
The purpose of this problem is to get your comfortable both on the command line as well as
using the Eclipse IDE. For parts A and B, you may use any program you like to edit your java
files (e.g., Dr. Java, vim, Notepad++, or even Eclipse), but we would like you to compile the
program, run some junit tests, and generate Javadocs via the command line. For part C, you
will do the same steps in Eclipse.

Download following Files from Vocareum (see instructions here) or copy them from the public

folder here /home/linux/ieng6/cs12f/public/HW1/* and save them to your HW1 directory:

Counter.java
countertest/CounterTest.java
Counter.pdf

Note that you should create a new directory inside your HW1 directory and place the
CounterTest.java file there. Or you can just download the whole countertest folder, which
contains the file CounterTest.java. In other words your directory structure should be the same
as ours.

A. Look at the file Counter.pdf. This is a PDF of documentation created using javadoc. Using
whatever editor you like (vim, Dr. Java, or even Eclipse), modify Counter.java with appropriate
javadoc comments, so that it generates similar documentation. Replace the author field with
your name.

Next generate the javadocs for this file via the command line, and place all of the documentation
files in a subdirectory called doc in your HW1 directory. If you do not know how to do this, and
don’t know where to start, try Googling “javadoc command line” (without the quotes). I
recommend skipping the StackOverflow link and going to the official Java page. The section on
“options” will be particularly useful.

Look at the generated Counter.html file to be sure it was generated appropriately, and matches
what is in Counter.pdf (with your name as the author). When you turn in Counter.java, we will
run javadoc on your file to create the required documentation.

In addition, place the following information in your HW1-Answers.pdf file
● What command line is used to create the javadoc documentation in HW1/doc?
● What command-line flag(s) is/are used to to create the author and version entries for the

class

B. Make sure you are done with part A before continuing. Next you will write JUnit tests and run
them from the command line. If you are working on your own machine, follow the instructions

https://www.tutorialspoint.com/junit/junit_environment_setup.htm
https://docs.google.com/document/d/1L7ruD9ReTJc6m4aLoZypW-BHtTpAlL_UJGwmy9P1gys/edit#heading=h.4e5akiksdv98
http://www.quia.com/quiz/6502945.html

here to install JUnit 4 (NOT JUnit 5) on your own machine. Note that these instructions omit
the step where you need to add the hamcrest-core file to your CLASSPATH (you need to do this
or you will get a compile error).
First, a little set up for these tests. We are using JUnit 4 which requires that all code be in
packages, so before we can run our tests, we need to move the Counter.java code into a
package.

Move your Counter.java file into the countertest directory. Then, in a text editor, uncomment the
line
package countertest;
at the top of the Counter.java file.

Now, open the CounterTest.java file in an editor. Most of this file is already complete, and you
should be able to compile and run it (see below). However, there are some ‘TODO:’ marked in
comments where you are to complete the code. These completions including adding comments
at the top of the file and completing the code to properly run some of the unit tests against the
Counter class defined in part A. When you run the unit tests, they should make reasonable
tests and print out the following when running the textui-based TestRunner.

.Checking Default Counter Value is Zero

.Checking Proper Increment

.Checking Multiple Increments

.Checking Reset

.Checking Decrement

Time: 0.002

OK (5 tests)

Here’s what to do for this part:
1. First, complete the TODO items in CounterTest.java.
2. Next, run all of the tests from the command line. You will need to figure out the proper

sequence of commands to do this. In your HW1-Answers.pdf file, write the command
that you used to successfully run the JUnit tests from the command line. Feel free to
refer to the slides from class or to use Google for help.

3. Finally, modify Counter.java so that your Reset test fails. The version of Counter.java
that does not pass the Reset test is the version you should turn in. To be clear.
Counter.java must compile but it should fail a reasonable Reset test. We will run your
tests against an error-free version of Counter.java to insure that all tests pass. Then we
will run your tests against your turned in version of Counter.java to see the failed Reset
test.

C. Next you will run the same tests, but in Eclipse. Follow the Eclipse documentation or any
other tutorial to create a new Java project with the package countertest. Create the class

https://www.tutorialspoint.com/junit/junit_environment_setup.htm

Counter in the countertest package. You can load in the existing source code, or you can create
a new class and copy and paste in the code from Counter.java. Then, create a JUnit test class
called CounterTest that contains the code from CounterTest.java. Again, a simple way to do this
is to create a new Test and then copy and paste the code in, or you can import the tester class
source file. Use Google, talk to the tutors and talk to your classmates if you are having trouble.
It is completely OK to help each other out with this part (i.e. getting set up to work in
Eclipse) and is not considered cheating. Compile your code and run the JUnit tests again.
Take a screenshot of your code loaded into Eclipse after running the tests. Place that
screenshot in your HW1-Answers.pdf file.

In addition, place the following information in your HW1-Answers.pdf file
● What was the most difficult/confusing part about getting set up in Eclipse?

For the rest of this assignment (and the rest of this course) you can use any editing environment
you choose.

Problem #2 (40 points)
In this problem you will create a computer game to play the game of Rock-Paper-Scissors with
a user. If you are unfamiliar with this game, you can read about it on Wikipedia here.

We have provided a tiny bit of starter code in the file RockPaperScissors.java. You will write
your game in the main method. If you are using Eclipse, be sure this class stays in the default
package. When the user starts your game, it should play the game of Rock Paper Scissors with
the user until the user types ‘q’. Here is an example run. User input is shown in blue.

> java RockPaperScissors
Let's play! What's your move? (r=rock, p=paper, s=scissors or q to
quit)
r
I choose rock. It's a tie
Let's play! What's your move? (r=rock, p=paper, s=scissors or q to
quit)
p
I choose paper. It's a tie
Let's play! What's your move? (r=rock, p=paper, s=scissors or q to
quit)
g
That is not a valid move. Please try again.
(r=rock, p=paper, s=scissors or q to quit)
p
I choose rock. You win.
Let's play! What's your move? (r=rock, p=paper, s=scissors or q to
quit)
s
I choose rock. I win!

http://en.wikipedia.org/wiki/Rock-paper-scissors

Let's play! What's your move? (r=rock, p=paper, s=scissors or q to
quit)
r
I choose rock. It's a tie
Let's play! What's your move? (r=rock, p=paper, s=scissors or q to
quit)
s
I choose paper. You win.
Let's play! What's your move? (r=rock, p=paper, s=scissors or q to
quit)
q
Thanks for playing!
Our most recent games (in reverse order) were:
Me: paper You: scissors
Me: rock You: rock
Me: rock You: scissors
Me: rock You: paper
Me: paper You: paper
Me: rock You: rock
Our overall stats are:
I won: 16% You won 33% We tied: 50%

Your exact formatting doesn’t have to match ours, but the game play and which statistics are
printed at the end should match. (Though of course, the exact values of the statistics will
depend on the user’s and system’s moves in any given game!)

Here are some detailed requirements of the game play and specifics about the program:
● You will write your code in the main method, but you should use good style and helper

functions as needed. Remember that these helper functions need to be static, because
you are not creating any RockPaperScissors objects.

● The game should repeat until the user enters ‘q’
● The game should track the full move history for both players. It should store the move

history of the user in an array of Strings and the move history of the system in a
LinkedList of Strings. These variables are already set up in the starter code. You just
need to use them.

● The array that stores the user’s moves is initialized to size 5. As the user enters more
moves than the array will hold you should write code to expand this array (really, to
make a new array and copy over the contents of the old one). The new array should
always be twice the size of the old array. E.g. on the 6th move, the array becomes size
10, on the 11th move it becomes size 20, etc. You must do this resizing and copying
“from scratch”. That is, you have to write the code yourself, and may NOT use any
method in Java’s Arrays class.

● At the end of the game, the system should print out up to the last 10 games, in reverse
order. If there has not been 10 games, it should print out as many as has been played.
If there have been more than 10 games, it should only print the most recent 10. (But

remember, it should store the full game histories). It should also print the win and tie
statistics as in the example.

● Your program should gracefully handle incorrect input by re-prompting the user until they
enter valid input. You can look for the letters r, s and p exactly, or allow more freedom in
the input.

● Your programs should generate no exceptions under (almost) any circumstances. Try to
break with bad input.

● It’s up to you to decide how the computer player chooses its moves, but the one rule is it
cannot cheat. That is, it cannot look at the user’s move and then decide how to move. It
can, however, look at the user’s move history as well as its own history. You can do
something as simple as having it choose a random move, or the same move, every time.
But if you’d like to get more sophisticated (and possibly earn a star point*), you should
try to make the best player out there by taking into account what you know about how
the user plays. The graders will play your programs, and we will feature the top
performers in class. It’s amazing how “smart” you can make your program with just a
little information. If you do get creative here, make sure you document your
approach in your header comment at the top of your RockPaperScissors.java file.

● Feel free to make a more creative version of RPS, for example, Rock Paper Scissors
Lizard Spock is always fun. Get creative. Just make sure it’s easy to understand how to
play your game.

* What the heck is a star point? A star point is like extra credit, only it is not really factored
into your grade. So why do the star point extensions?

1. The best reason to do these extensions is simply because you are excited about the problems. If
you found the basic assignment interesting, but rather easy, and are hungry for more, then tackle
these extensions!

2. Star points can also help your grade. If at the end of the term you have almost made it to the
next higher grade and you've done enough star point extensions, you'll be pushed up a grade.
What "almost" and "enough" mean cannot be determined in advance, so there's no way I can
answer questions like "If I have a XX% and have done N star points, will I go up?"

3. Finally, star points communicate to me that you are deeply engaged in the material. So if at some
point in the future you're looking for a letter of recommendation, or looking to be a tutor, star
points give you something that I can brag about in your letter, or that make me believe you'll be a
good tutor because you're deeply engaged with the material.

Problem #3 (25 points)
True/False. Take the following quiz: https://www.quia.com/quiz/6506535.html

This part is open book and open notes. You may use Google to help you determine the
answers to these questions, and you may run any Java code to help you determine the
answers. However, you may not ask your classmates for the answers nor may you give the
answers to any of your classmates. The point is to understand the answers, as we assume that
you have this knowledge from CSE 11 or CSE 8B and we will build on it.

https://www.quia.com/quiz/6506535.html
http://www.samkass.com/theories/RPSSL.html
http://www.samkass.com/theories/RPSSL.html

How to submit your homework
These are instructions for submitting all of your homeworks for CSE12.

You should have received an email from support@vocareum.com indicating your userid and

password for this website. This is our submission site.

1, Follow the link https://labs.vocareum.com/home/login.php and log in.

2, You should be able to see HW1.

3, Click on the ”Upload” on the upper left corner. This assignment you have to create a new

directory for countertest. Unfortunately, Vocareum does not support uploading folders. So you

can create a folder and then upload files. You should preserve the directory structure you

used when testing your homework.

4, We are setting the number of submission to be unlimited. So feel free to submit the

assignment multiple times.

5, Once you submit the assignment, you should be able to view your submission report in

Details->View submission report. We have created a check submission script for you to check if

your submission has the correct directories, files and their structures. And all of codes compile.

You should be able to see that you pass all the checking points. Like the following:

Checking files

HW1-Answers.pdf file exists

Compiling files

RockPaperScissors.java file exists
RockPaperScissors.java compiles sucessfully
countertest/Counter.java file exists
countertest/Counter.java compiles sucessfully
countertest/CounterTest.java file exists
CounterTest.java compiles sucessfully
------ SUMMARY ------
All files exist
All files compile

8, Once you submit and check, you are done with submitting.

We are going to grade the latest version you submit. Passing the check points simply means
that you don’t miss any necessary files and code compile. However, you should still keep testing
your code.

https://labs.vocareum.com/home/login.php

