University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

Assignment 2

Al

The objectives of this assignment includes:
e Learning about encapsulation, inheritance, polymorphism and function overloading
e Apply the concepts learnt by developing a survey and path planning program

Background

In a theoretical flat-land universe, everything is in 2 dimensions. People, animals, plants to
planets, moons, galaxies and even space itself, is in 2D. In our flat-land space (i.e. ‘flat-space’),
there is a powerful organization called 2D-StarFleet (2DSF), whose goals include seeking out
new life and civilization via exploration.

While on a routine mission of exploration, the flagship of 2DSF, the Enterprise-2D is trapped in
an expanse of space encircled by a massive ring of violent, electrical plasma storm. Data
coming in from the sensor array reveals that the only opening in this storm is located at the far
end of the enclosed area, from Enterprise-2D’s current location.

In addition, the sensor data also revealed that this area is populated by strange, 2D geometrical
shapes, with sizes ranging from a small moon, asteroid, to large planets, or even a star! This
implies that to travel to the ‘exit’ at the far end of the storm, you need to understand more about
the properties of these shapes and attempt to chart a course to navigate to the exit!

As a Science Officer aboard Enterprise-2D, you need to develop a program that has the
following capabilities:

read in sensor data on the strange 2D shapes (via manual input)

compute the area (‘mass’) of these shapes

print shapes report (e.g. list of points: on its perimeter, or totally within shape’s area)
sort shapes data (sorted by special type and area)

The next section provides information about the requirements for developing this program.

Page 1 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

Task Requirements

A)

In terms of relative positioning, you may assume a coordinate system with Enterprise-2D
at the origin, trying to navigate in a general ‘upper-right’ direction, to get to the exit in the
storm. Please refer to Appendix A, which elaborates on this coordinate system and the
unit representation of 2D shapes.

IMPORTANT : For this assignment, you should not assume that the 2D shapes in
Appendix A are positioned exactly as shown in Appendix A, nor that there are not more
shapes. There will, however, only be shapes of the types listed in Appendix B

The sensor data coming in from Enterprise-2D’s sensor array provides crucial information
about the 2D shapes such as name, special type and location of all vertices (that outlines
the perimeter of the shape). Please refer to Appendix B, which provides a more detailed
description of the sensor data.

C) To assist you in the initial class design of your program, please refer to Appendix C,

which illustrates one possible way of designing your program. It also describes a list of
requirements which you need to implement, especially those marked under “compulsory”.
The classes highlighted in Appendix C are purely meant to store data about the 2D
shapes entered into your program by user.

D) You are required to implement a main driver class called ‘Assn2’, whose methods are

called to start the program. When started, it should print a menu providing the following
functionalities :

read in sensor data on the strange 2D shapes (via manual input)

compute the area (‘mass’) of these shapes

print shapes report (e.g. list of points on its perimeter, or totally within shapes area)
sort shapes data (sorted by special type and area)

Appendix D provides more information about implementing this class.

Once the program is completed and tested to be working successfully, you are highly
encouraged to add on “new features” to the program that you feel are relevant to the
problem. Additional marks may be awarded subject to the relevancy and correctness of
the new functionalities. (Note : the additional features will only be considered IF the
program has correctly fulfiled all the basic requirements elaborated in the earlier
sections!)

You are to use only C++ language to develop your program. There is no restriction on the

IDE as long as your source files can be compiled by g++ compiler (that comes packaged
in Ubuntu linux) and executed in the Ubuntu terminal shell environment.

Page 2 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

Deliverables

1)

The deliverables include the following:

a) The actual working C++ program (soft copy), with _comments on each file,
function or block of code to help the tutor understand its purpose.

b) A softcopy word document that elaborates on:
e (Interpreted) requirements of the program
e Diagram / lllustrations of program design
e Summary of implementation of each module in your program
e Reflections on program development (e.g. assumptions made, difficulties
faced, what could have been done better, possible enhancements in
future, what have you learnt, etc)

c) A program demo/software testing during lab session. You must be prepared to
perform certain tasks / answer any questions posed by the tutor.

2) IMPT: Please follow closely, to the submission instructions in Appendix E, which
contains details about what to submit, file naming conventions, when to submit, where
to submit, etc.

3) The software demo / testing will be held during lab session where you are supposed
to submit your assignment. Some time will be allocated for you to present /
demonstrate your program's capabilities during the session.

Grading

Student’s deliverable will be graded according to the following criteria:

(i)
(ii)

(iii)

(iv)

Program fulfills all the basic requirements stipulated by the assignment

Successful demonstration of a working program, clarity of explanation / presentation
and satisfactory answers provided during Q & A session.

Additional effort (e.g. enhancing the program with relevant features over and above
task requirements, impressive, ‘killer’ presentation)

After the submission of deliverables, students will be required undergo a software
testing process (to determine the correctness and fulfillment of software requirements.)
Further instructions will be given by the Tutor during the subsequent respective labs.
Please pay attention as failure to adhere to instructions will result in deduction of
marks.

Page 3 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

Tutor’s note:

In the real working world, satisfactory completion of your tasks is no longer enough. The
capability, efficiency and robustness of your system to operate under different testing conditions,
and the ability to add value, communicate and/or demonstrate your ideas with clarity is just as
important as correct functioning of your program. The grading criteria is set to imitate such
requirements on a ‘smaller scale’.

Page 4 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

APPENDIX A

(Coordinate System w.r.t. Enterprise-2D, and the plasma storm)

Y Axis (mKM)
1 unit = 10 million Km
EXTT!
14 -
fﬂf’ = Q ’, ,‘
.- R
] -l / \|
12 ”/ &% /’ ,,’ q
t’ ” |
-))
d "_—----_-‘~__ 7 ,’
II . o " " '
I’ ”) I
4 -] l
/’ 10 ”/ ‘ '
’, ; '
/' ’, “
/, ',f :
, ; !
’ ; I |
I, I, | "
II 8 [I " I
------------- s ! '
;]
! [}
4 I
6 > ,'
7
! 1
’, %
! i
1’ \ ’
.
4] , .
d R [/
i v
’ b
< 7
) X
i [- \
T ra
[l ’,
< ': ’ \ X Axis (mKM)
' 1 unit =
0 2 4 6 8 10 5 r "
’ 10 million Km

Point2D (0, 0) - the origin,
it represents the current
location of Enterprise-2D

Initial Sensor sweep reveals these large 2D shapes of different sizes populating
the area. Note: for this assignment, assume all shapes are axis-aligned, as far
as possible. (i.e. we will not encounter shapes which are rotated at ‘strange’

angles w.r.t. the x & y axes!)

Enterprise-2D is trapped in this huge ring of electrical plasma storm. The only
opening to exit this storm is located in the far ‘upper-right’ of the coordinate

system, for e.g. at Point2D (14, 14) !

Page 5 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

APPENDIX B

(Description of Sensor Data)

Name
The name of the 2D shape reveals the general type of shape encountered. Currently, the values
consist of : “Square”, “Rectangle”, “Cross” and “Circle”.

Special Type
Enterprise-2D’s sensor has detected that some shapes encloses a ‘warp-space’ with the

amazing ability to teleport any objects that touches one of its vertex, to any other vertices of the
same shape, instantaneously !

This makes it highly desirable, for Enterprise-2D to travel towards this kind of shape, in the
hopes of travelling faster, and saving precious fuel at the same time!

There are only 2 values for ‘special type’ : “WS” (Warp-Space) or “NS” (Normal-Space).

Vertices

The vertices is actually a set of (x, y) points, that describes the outline of the 2D shape. The
number of points in the set, depends on the name of the shape. The table below summarizes
the kind of sensor data your program expects to receive.

Name Special Type (Ii\.lg..)(:f;’/%rgii?:) Actual Vertex Data ...
“Cross” “WS” or “NS” 12 e.g.(1,3),(1,4), ... etc.
“Square” “WS” or “NS” 4
“Rectangle” “WS” or “NS” 4
Note :

As mentioned in the Background section, the 1% capability of your program should allow manual
input of the above data.

It is not necessary to prompt user for “No. of Vertices” because the name of the shape will
already inform your program about how much vertex data to expect.

For example, when your program prompt for name of the shape, if user enters “Cross’, it is safe
for your program to assume that user is going to key a set of 12 (x, y) points later!

Page 6 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

APPENDIX C

(Implementation Requirements)

ShapeTwoD

name: string
containsWarpSpace: bool

+ ShapeTwoD (name: string, contains\WarpSpace:
bool)

+ getName () : string
+ getContainsWarpSpace () : bool
+ toString () : string

+ computeArea () : double
+ isPointinShape (x: int, y: int) : bool
+ isPointOnShape (x: int, y: int) : bool

+ setName (name: string)
+ setContainsWarpSpace (containsWarpSpace: bool)

/\

Rectangle

attributes up to you to define!

Cross
/* /*
attributes up to you to define!
¥ ¥
I* /*

with the exception of inherited
methods that you must
implement, the rest is up to
you to define as necessary!

with the exception of inherited
methods that you must
implement, the rest is up to

you to define as necessary!

*/

*/

Square

Circle

/*
attributes up to you to define!
*/

/*
attributes up to you to define!
*/

/*

with the exception of inherited
methods that you must
implement, the rest is up to
you to define as necessary!
%/

/*

with the exception of inherited
methods that you must
implement, the rest is up to
you to define as necessary!
*/

Page 7 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

Compulsory requirements

#1

#2

#3

#4

#5

#6

The parent class is ‘SshapeTwoD’. Any attributes, constructors and methods specified in
the diagram must be implemented, with the exact same name, parameter, type and
access!

The sub-classes of ShapeTwoD must be named ‘Cross’, ‘Square’, ‘Circle’ and
‘Rectangle’.

The method ‘toString ()’ In class ShapeTwoD is a virtual function that returns a string
containing all the values of the attributes in the shape, excluding the array of vertex data.
(However, sub-classes of shapeTwoD must output the array of vertex data, inclusive of
any other attribute’s values it inherited)

The method ‘computeArea ()’ in class ShapeTwoD is a virtual function. It must be
override by the sub-classes and implemented individually.

For example, because each sub-class has different number of vertices and values, sub-
class Cross’s computeArea () Iimplementation would use a different algorithm /
formula from sub-class Square’s computeArea () implementation!

Note : The sensor data will only provide the locations (vertices) of each 2D shape
encountered. You will be required to do the necessary research to derive the formula to
compute the area for each shape, based on the set of vertex data (i,e. a set of [x, y]
points) provided!

]

The method ‘isPointInShape ()’ in class ShapeTwoD is a virtual function. It takes in
a [x, y] location and returns a boolean value indicating whether the location is totally
within_the shape’s area. It must be over-ridden by the sub-classes and implemented
individually. (Pls refer to sample output in Appendix D).

]

The method ‘isPointOnShape ()’ In class ShapeTwoD is also a virtual function. It
takes in a [x, y] location and returns a boolean value indicating whether the location is
found on_any lines joining the shapes’ vertices! It must be over-ridden by the sub-
classes and implemented individually. (Pls refer to sample output in Appendix D).

Page 8 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

Other requirements

1) For parent class ‘ShapeTwoD’. You are free to add on any additional methods or
attributes deemed necessary for your program to provide its services.

1) Since user will key in the name of the shape, it is possible for you to declare arrays of
fixed sizes in the sub-classes to store the coordinate vertices of the shape!

i) You are free to implement any other additional classes you feel necessary so as to
provide the required capabilities for this program.

Page 9 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

APPENDIX D

(Implementation info for : Assn2 driver class)

This class contains the main () method which declares and instantiates all other classes (i.e.
Shape2D, Square, ... etc) and sets up all the necessary interactions to perform its task.

Student ID : 1234567
Student Name : Tan Ah Meng Elvis < —I

Welcome to Assn2 program!
1) Input sensor data
2) Compute area (for all records)

3) Print shapes report
4) Sort shape data

Please enter your choice : 1
[Input sensor data]

Please enter name of shape : Cross
Please enter special type : WS

===

Please enter x-ordinate of pt.1 : 1
Please enter y-ordinate of pt.1 : 1

Please enter x-ordinate of pt.12 : 1
Please enter y-ordinate of pt.12 : 2

Record successfully stored. Going back to main
menu ...

Student ID 11234567
Student Name : Tan Ah Meng Elvis

I | T |
I every time you display your Main Menu.

The figure on the right describes a sample
interaction between the main menu and
‘Compute area (for all records)’ function.

Note : The example assumes the case where t

message that ‘5 records were updated'!

The figure on the left describes a sample
interaction between the main menu and ‘Input
sensor data’ sub-menu (1% example)

Note :

All shapes data should be stored in a Shape2D
array in the AssnZ2 driver class. You may
assume that no more than 100 shapes will be
entered into your program at any one time!

L | I | e | I | I | 1
I Impt !! Please include your:

1. Student ID |
| 2. Student Name I

I Marks will be deducted if the required info I

is not shown.
* | | | | | | | | |

Student ID : 1234567
Student Name : Tan Ah Meng Elvis

Welcome to Assn2 program!

1) Input sensor data

2) Compute area (for all records)
3) Print shapes report

4) Sort shapes data

Please enter your choice : 2

Computation completed! (5 records were updated)
.

re only 5 shapes input so far, hence, the

In this compute area function, you must exhibit polymorphic behavior and dynamic binding by
invoking the correct function for each shape stored in the Shape2D array !

Page 10 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

Student ID : 1234567
Student Name : Tan Ah Meng Elvis

Welcome to Assn2 program!

1) Input sensor data

2) Compute area (for all records)
3) Print shapes report

4) Sort shape data

Please enter your choice : 1

[Input sensor data |
Please enter name of shape : Circle
Please enter special type : NS

Please enter x-ordinate of center : 5
Please enter y-ordinate of center : 7
Please enter radius (units) : 2

Record successfully stored. Going back to main
menu ...

Student ID : 1234567
Student Name : Tan Ah Meng Elvis

The figure on the left describes a sample
interaction between the main menu and ‘Input
sensor data’ sub-menu (2" example)

Note : For circle, there is no need to enter
vertices, as there are no “corners” as opposed to
other multi-sided polygon shape. Instead, just
prompt user to enter the [x, y] of its center and its
radius, as shown on the left ...

Page 11 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

The figure on the right describes a
sample interaction between the main
menu and ‘Print shapes report’ function.

Notes : The example assumes the case
where there has only been 5 sensor
data records input so far.

‘Points on perimeter’ refers to only those
points lying on the line drawn between 2
vertices, for each pair of vertices
defining the shape’s outline.

E.g (1,‘2) lies on a line betw&en
vertices (1, 1) and (1, 3) !

You do not need to include those points
which describe the vertices of the shape!

‘Points within shape’ refers to those
points which are totally within the
shape.

You do not need to include :

- those points which degcribe the

vertices of the shape!
- those points on the perigeter of
the shape!

Student ID : 1234567
Student Name : Tan Ah Meng Elvis

Welcome to Assn2 program!

1) Input sensor data

2) Compute area (for all records)
3) Print shapes report

4) Sort shapes data

Please enter your choice : 3
Total no. of records available = 5

Shape [0]

Name : Square

Special Type : WS

Area : 4 units square

Vertices :

Point [0] : (1, 1)

Point [1] : (1, 3)

Point [2] : (3, 3)
\Point [3]:(3 1)

N

Points on perimeter : (1,2), (2, 1), (2, 3), (3, 2)

Points within shape : (2, 2)

Shape [4]

Name : Rectangle
Special Type : NS
Area : 8 units square
Vertices :

Point [0] : (2, 17)
Point [1] : (2, 15)
Point [2] : (6, 15)
Point [3] : (6, 17)

Points on perimeter : (2, 16), (3, 15), (4, 15), (5, 15), (6,
16), (5, 17), (4, 17), (3, 17)

N
Points within shape : (3, 16), (4, 16), (5, 16)

Note for Circle :

w.r.t. the circle’s center (X, y)

not compulsory to output the circle’s center.

Points on perimeter : only output the 4 points that are “North” / “South” / “East” / “West”

Points within shape : output all (x, y) points that are totally within the circumference. It is

Page 12 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

The figure on the right describes a
sample interaction between the
main menu and ‘Sort shapes data’
sub-menu.

Note : For ‘sort by special type and
area’ option in the sub-menu,
shapes with special types ‘WS’
should be displayed first, followed

by all shapes with special types ‘NS’.

Within each group of shapes (i.e.
WS or NS), display the shapes in
descending order!

Student ID : 1234567
Student Name : Tan Ah Meng Elvis

Welcome to Assn2 program!

1) Input sensor data

2) Compute area (for all records)
3) Print shapes report

4) Sort shapes data

Please enter your choice : 4

a) Sort by area (ascending)
b) Sort by area (descending)
c) Sort by special type and area

Please select sort option (‘q’ to go main menu) : b
Sort by area (largest to smallest) ...

Shape [4]

Name : Rectangle
Special Type : NS
Area : 8 units square
Vertices :

Point [0] : (2, 17)
Point [1] : (2, 15)
Point [2] : (6, 15)
Point [3] : (6, 17)

Points on perimeter : (2, 16), (3, 15), (4, 15), (5, 15), (6, 16), (5,
17), (4, 17), (3, 17)

Points within shape : (3, 16), (4, 16), (5, 16)

Shape [2]

Name : Square
Special Type : WS
Area : 1 units square
Vertices :

Point [0] : (6, 6)
Point [1] : (6, 7)
Point [2] : (7, 7)
Point [3] : (7, 6)

Points on perimeter : none!

Points within shape : none!

Page 13 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

APPENDIX E

Submission Instructions (V. IMPT!!)

1) Deliverables
a) All submissions should be in softcopy, unless otherwise instructed
b) For the actual files to be submitted, you typically need to include the following:

- word document report (e.g. *.doc), save as MS Word 97-2003 format

- the source file(s), (e.g. *.h, *.0, or *.cpp files)
- the executable file, (using Ubuntu g++ compiler), compile into an executable
filename with *.exe (e.g. csci251_a2.exe)
2) How to package

Compress all your assignment files into a single zip file. Please use the following naming
format :

<FTIPT>_<Your Grp>_A2_<Stud. No.>_<Name>.zip

A

Example : FT_TutGrp3_A2_1234567_JohnDoeAnderson.zip

<FTIPT> Use “FT” for Full-Time student, “PT” if you are Part-Time student

- <Your Grp> refers to your SIM tutorial group (e.g. TutGrp1 / TutGrp2 / TutGrp3 / etc.)
- A2 if you are submitting assignment 2, A3 if submitting assignment 3 etc.
- <Stud. No.> refers to your UOW student number (e.g. 1234567)

= <Name> refers to your UOW registered name (e.g. JohnDoeAnderson)

Page 14 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

3) Where to submit
Please submit your assignment via Moodle elLearning site.

IMPORTANT NOTE :

e To minimize the chances of encountering UNFORSEEN SITUATIONS
(mentioned below), please do an EARLY SUBMISSION via Moodle.

o Prior to the relevant assignment deadline, you can upload (and replace) your
assignment submissions in Moodle as many times as you like

o It is your responsibility to confirm that you have submitted the final (and correct
version) of your deliverables to Moodle before deadline

o Any submission uploaded to Moodle after deadline will be considered late

In the event of UNFORSEEN SITUATIONS :
(E.g. 3 hrs prior to deadline, there is proof of unforseen events like Moodle site down,
unable to upload assignment, undersea internet cable damaged by sea urchins, etc)

Please email your single zip file to your tutor at :

csci2b1@yahoo.com for FULL TIME students

csci251@yahoo.com for PART TIME students

In your email subject line, type in the following information :

<FT/PT> <Your Grp> <assignment info> <student number> and 5<name>
]]

\ \ 1 7 :,’,

\‘\ “\ : II, /,’E
Example: v \ ' / 0

\) \ " /” ”l E
To : “\ tutor"§ email (see above) -------------- Srtommmnnnsd
X | v ¥ »
Subject ; FT TutGrp3 A2 1234567 JohnDoeAnderson
Note 1: The timestamp shown on tutor's email Inbox will be used to determine if the
assignment is late or not.

Note 2 : After email submission, your mailbox’s sent folder would have a

copy (record) of your sent email, please do not delete that copy !! It could
be used to prove your timely submission, in case the Tutor did not receive
your email!

Page 15 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

4) When to submit

a) Depending on the time-table, a software demo / testing / presentation for your
assignment will be scheduled during the:

3" - 5™ |ab session for the semester (i.e. lab 3 - 5), for Full Time (FT) students
- 2" _4"M|ab session for the semester (i.e. lab 2 - 4), for Part Time (PT) students

Please consult your tutor for further details. Some time will be allocated for students
to demo / present / explain your system design or run test cases during the session.

b) Please refer to the following table on the different deliverables, submission events &

deadlines
Submission Deadline &0 5 /
Assignment (check Moodle for T (t)' twatre temo Email Test Case Result files
EXACT date-time) esting (test cases), by :
during ...
PT FT
Lab 2 Lab 3 Lab 2(PT), Lab 3(FT) End of Lab 2(PT), Lab 3(FT)
Lab 3 Lab 4 Lab 3(PT), Lab 4(FT) End of Lab 3(PT), Lab 4(FT)
Lab 4 Lab 5 Lab 4(PT), Lab 5(FT) End of Lab 4(PT), Lab 5(FT)
X

¢S NEEEENNEEFEEEEENEEEEER EEFEEEESEEEEEEEN annn®
*
Ad

Note:_l('PT)."= Part Time Students, (FT) = Full Time Students !

*
A TY

c) IMPORTANT NOTE : Non-submission of any of the above mentioned deliverables will
result in ZERO marks! Please check with your Tutor personally if you are unsure!

Page 16 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

5) Please help by paying attention to the following ...

! VERY IMPORTANT !

PLEASE FOLLOW ALL THE GUIDELINES / REQUIREMENTS IN ALL ASSIGNMENT
APPENDICES !!

PLEASE FOLLOW ALL THE SUBMISSION INSTRUCTIONS FROM 1 TO 4 !!
IF YOU ARE NOT SURE,
PLEASE CHECK WITH YOUR TUTOR DURING LABS / LECTURES !
OR ...

PLEASE EMAIL YOUR ENQUIRIES TO YOUR TUTOR !

MARKS WILL BE DEDUCTED IF YOU FAIL TO FOLLOW INSTRUCTIONS !!

Examples of marks deduction :

e Your deliverables / zip file does not follow naming convention

¢ You have no email subject / or do not following haming convention

e Your email address / content does not include your name/identity (i.e. tutor cannot
easily identify sender)

¢ \Wrong naming or misleading information given
(e.q. putting “A2” in email subject, when you are submitting “A1”)
(e.g. naming “A1” in your zip file, but inside contains A2 files)

You email to the WRONG tutor

Your submission cannot be downloaded and unzipped

Your program cannot be re-compiled and/or executable file cannot run
Your report / testing files cannot be opened by Microsoft Word / Excel 2003
You did not submit / incomplete submission of software demo / testing files
etc

Page 17 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

6) Re-submission administration

After the deadline, (ON case-by-case basis), some students / grp may be granted
an opportunity for an un-official resubmission by the tutor. If this is so, please adhere to
the following instructions carefully:

<Step 1> - Prepare 2 zip files as follows
Zip up for re-submission, program files according to the following format :

Resubmit_<FT/PT>>_<Your Grp>_A2_<Stud. No.> _<Name>.zip

Example : Resubmit_FT_TutGrp3_ A2_1234567_JohnDoeAnderson.zip

Zip up for re-submission, test case results files according to the following format :

Resubmit_<FT/PT>_<Your Grp>_A2_TCResults_<Stud. No.> _<Name>.zip

Example : Resubmit_FT_TutGrp3_A2_TCResults_1234567_JohnDoeAnderson.zip

- <FTIPT> Use “FT” for Full-Time student, “PT” if you are Part-Time student

- <Your Grp> refers to your SIM tutorial group (e.g. TutGrp1 / TutGrp2 / TutGrp3 / etc.)
- A2 if you are submitting assignment 2, A3 if submitting assignment 3 etc.

- <Stud. No.> refers to your UOW student number (e.g. 1234567)

= <Name> refers to your UOW registered name (e.g. JohnDoeAnderson)

- V. IMPT - To prevent Tutor’s Inbox from blowing up in
his face, each student 1s only allowed to re-submit
ONCE, for each assignment only!

Page 18 of 19

University of Wollongong
School of Computing and Information Technology

CSCI251 Advanced Programming

<Step 2>

Please email your 2 zip files to your tutor's email (refer to section 3) - Where to submit)
In your email subject line, type in the following information :

Resubmit <FT/PT> <Your Grp> <assignment info> <student number> and <name>

Example: R RS ! o o
\\ \\ ‘| ’I ’,l
To : tutor's dmail (\r‘efer to s&ction 3)I7Where to Sl;lbfﬁit)
Wy v [»
Subject : Resubmit FT TutGrp3 A2 1234567 JohnDoeAnderson

IMPORTANT NOTE :

Non-submission of any of the above mentioned files, or failure to adhere to submission
instructions will result in ZERO marks!

Please check with your Tutor personally if you are unsure!

Page 19 of 19

