
CS 234 Winter 2021
Assignment 1

Due: January 22 at 6:00 pm (PST)

For submission instructions please refer to website For all problems, if you use an existing result
from either the literature or a textbook to solve the exercise, you need to cite the source.

1 Flappy Karel MDP [25 pts]

There is a hot new mobile game on the market called Flappy Karel, where Karel the robot must
dodge the red pillars of doom and flap its way to the green pasture. Consider the following 2 grid
environments (Flappy World 1 and Flappy World 2). Starting from any unshaded square, Karel can
either move right & up, or right & down (e.g from state 4 you can move to state 10 or 12, think
checkers). Actions are deterministic and always succeed unless they will cause Karel to run into a
wall. The thicker edges indicate walls, and attempting to move in the direction of a wall results in
falling down one square (e.g. going in any direction from state 30 leads to falling into state 31). A
successful run by Karel in Flappy World 1 is shown in Figure 1b. Taking any action from the green
target squares (no. 32) earns a reward of rg and ends the episode. Taking any action from the red
squares of doom (no. 1, 7, 8, 12, 13...) earns a reward of rr and ends the episode. Otherwise, from
every other square, taking any action is associated with a reward rs. Assume the discount factor
γ = 0.9, rg = +5, and rr = −5 unless otherwise specified. Notice the Horizon is technically infinite
in both worlds.

1 8 15 22 29

2 9 16 23 30

3 10 17 24 31

4 11 18 25 32

5 12 19 26 33

6 13 20 27 34

7 14 21 28 35

(a) Flappy World 1

1 8 15 22 29

2 9 16 23 30

3 10 17 24 31

4 11 18 25 32

5 12 19 26 33

6 13 20 27 34

7 14 21 28 35

(b) A successful run by Karel in Flappy World 1

Figure 1

1

http://web.stanford.edu/class/cs234/assignments.html

(a) Let rs ∈ {−4,−1, 0, 1}. Starting in square 2, for each of the possible values of rs briefly
explain what the optimal policy would be in Flappy World 1. In each case is the optimal policy
unique and does the optimal policy depend on the value of the discount factor γ? Explain
your answer. [5 pts]

(b) What value of rs would cause the optimal policy to return the shortest path to the green
target square? Using this value of rs find the optimal value function for each square in Flappy
world 1. What is the optimal action from square 27? [5 pts]

Now consider Flappy world 2. It is the same as Flappy world 1, except there are no walls on the
right and left sides. Going past the right end of flappy world 2 simply loops you to left hand side.
Take a look at Figure 1b for a successful run by Karel in Flappy World 2.

1 8 15 22 29

2 9 16 23 30

3 10 17 24 31

4 11 18 25 32

5 12 19 26 33

6 13 20 27 34

7 14 21 28 35

(a) Flappy World 2

1 8 15 22 29

2 9 16 23 30

3 10 17 24 31

4 11 18 25 32

5 12 19 26 33

6 13 20 27 34

7 14 21 28 35

1 8 15 22 29

2 9 16 23 30

3 10 17 24 31

4 11 18 25 32

5 12 19 26 33

6 13 20 27 34

7 14 21 28 35

(b) A successful run by Karel in Flappy World 2

Figure 2

(c) Let rs ∈ {−4,−1, 0, 1}. Starting in square 3, for each of the possible values of rs briefly
explain what the optimal policy would be in Flappy World 2. Using the value of rs, that
would cause the optimal policy to return the shortest path to the green target square, find the
optimal value function for each square in Flappy world 2. What is the optimal action from
square 27? [5 pts]

(d) Consider a general MDP with rewards, and transitions. Consider a discount factor of γ. For
this case assume that the horizon is infinite (so there is no termination). A policy π in this
MDP induces a value function V π (lets refer to this as V π

old). Now suppose we have the same
MDP where all rewards have a constant c added to them and then have been scaled by a
constant a (i.e. rnew = a(c+ rold)). Can you come up with an expression for the new value
function V π induced by π in this second MDP in terms of V π

old, c, a, and γ? [5 pts]

(e) Can scaling all the rewards by a fixed amount change the optimal policy of a MDP? If so,
describe how different ranges of the constant a (where rnew = a ∗ (rold)) would change the
optimal policy of the MDP from part (c). [5 pts]

2

2 Applications of the Performance Difference Lemma [20pts]

The purpose of this exercise is to get familiar on how to compare the value of different policies, π1
and π2, on a fixed horizon MDP. A fixed horizon MDP is an MDP where the agent’s state is reset
after H timesteps; H is called the horizon of the MDP. There is no discount (i.e., γ = 1) and policies
are allowed to be non-stationary, i.e., the action identified by a policy depends on the timestep in
addition to the state. Let xt ∼ π denote the distribution over states at timestep t (for 1 ≤ t ≤ H)
upon following policy π and V π

t (xt) denote the value function of policy π in state xt and timestep
t, and Qπt (xt, a) denote the corresponding Q value associated to action a. As a clarifying example,
we denote Ext∼π1V (xt) to represent the average value of the value function V (·) over the states
at timestep t encountered upon following policy π1. The following equality is called performance
difference lemma :

V π1
1 (x1)− V π2

1 (x1) =
H∑
t=1

Ext∼π2
(
Qπ1t (xt, π1(xt, t))−Qπ1t (xt, π2(xt, t))

)
Intuition: The above expression can be interpreted in the following way. For concreteness,

assume that π1 is the better policy, i.e., achieving V π1
1 (x1) ≥ V π2

1 (x1). Suppose you’re following
policy π2 and you are at timestep t in state xt. You have the option to follow π1 (the better policy)
until the end of the episode, totalling Qπ1t (xt, π1(xt, t)) return from the current state-timestep;
or you have the option to follow π2 for one timestep and then follow π1 instead until the end
of the episode (you can follow many other policies of course). This would give you a “loss” of
Qπ1t (xt, π1(xt, t))−Qπ1t (xt, π2(xt, t)) that originates from following the worse policy π2 instead of π1
in that timestep. Then the equation above means that the value difference of the two policies is the
sum of all the losses induced by following the suboptimal policy for every timestep, weighted by the
expected trajectory of the policy you’re following.

Question You will use the performance difference lemma to solve this problem. Consider an
MDP where the state space S is partitioned into two sets of states S+ and its complement S+.

S = S+ ∪ S+

S+ ∩ S+ = ∅.

In every state s ∈ S+ there exists an action a+ that leads to the same state with probability 1
and gives a unitary reward:

p(st+1 = s | st = s, at = a+) = 1, p(st+ 1 6= s | st = s, at = a+) = 0.

The reward function is always positive. In S+ the reward function equals 1 upon playing a+ and
H upon playing any action a 6= a+. Therefore in S+

r(s, a+) = 1, r(s, a) = H, a 6= a+

Conversely, in any state s 6∈ S+, the reward function is in [0, 1] (∀s 6∈ S+ ∀a r(s, a) ∈ [0, 1]).
Consider a policy π and define a policy π+ that takes action a+ in any state S+ and is otherwise

equal to π:

π+(s) = a+ if s ∈ S+, π+(s) = π(s) if s 6∈ S+

3

Intuitively, π accumulates higher return than π+: in any state in S+ the policy π+ chooses to take
a unitary reward forever instead of a reward of H and then maybe more. Using the performance
difference lemma show that at any state s0

V π
1 (s0) ≥ V π+

1 (s0).

4

3 Nonstationary Discount Factor γ [30 pts]

In this problem you will consider a variable discount factor γ. In lecture 2, we proved that the
Bellman backup is a contraction for γ < 1 in the infinity norm.

In this problem we consider having a non-stationary discount factor and assume you want to
run K iterations of value iterations. Let VK and V ′K be any two arbitrary initial value functions (at
timestep K). The time-dependent Bellman backup operator Bk is defined as

Vk−1
def
= BkVk = max

a
[R(s, a) + γk

∑
s′∈S

p(s′|s, a)Vk(s′)]

where
γk = 1− 1

k + 1

Notice that the value function index is decreasing: K,K − 1, . . . , 2, 1

10pt Similarly to what you’ve done in class, show that the Bellman operator with non-stationary
discount factor at time step k is still a contraction, i.e.,

‖BkV −BkV ′‖∞ ≤ γk‖V − V ′‖∞

10pt Using the above inequality prove that

‖B1B2 · · ·BKVK −B1B2 · · ·BKV ′K‖∞ ≤ γ1γ2 · · · γk‖VK − V ′K‖∞

10pt Unfortunately γk ≈ 1 when k is large so you cannot conclude that the convergence occurs
exponentially fast. However, the error still shrinks: show that

γ1γ2 · · · γK ≤
1

K + 1

which allows you to write

‖B1B2 · · ·BKVK −B1B2 · · ·BKV ′K‖∞ ≤
1

K + 1
‖VK − V ′K‖∞

and ensure convergence, albeit at a slower rate.

5

4 Frozen Lake MDP [25 pts]

Now you will implement value iteration and policy iteration for the Frozen Lake environment from
OpenAI Gym. We have provided custom versions of this environment in the starter code.

(a) (coding) Read through vi_and_pi.py and implement policy_evaluation, policy_improvement
and policy_iteration. The stopping tolerance (defined as maxs |Vold(s)− Vnew(s)|) is tol =
10−3 . Use γ = 0.9. Return the optimal value function and the optimal policy. [10pts]

(b) (coding) Implement value_iteration in vi_and_pi.py. The stopping tolerance is tol =
10−3 . Use γ = 0.9. Return the optimal value function and the optimal policy. [10 pts]

(c) (written) Run both methods on the Deterministic-4x4-FrozenLake-v0 and

Stochastic-4x4-FrozenLake-v0 environments. In the second environment, the dynamics of the
world are stochastic. How does stochasticity affect the number of iterations required, and the
resulting policy? [5 pts]

6

"https://gym.openai.com/envs/FrozenLake-v0"

	Flappy Karel MDP [25 pts]
	Applications of the Performance Difference Lemma [20pts]
	Nonstationary Discount Factor [30 pts]
	Frozen Lake MDP [25 pts]

