
CS220 pg. 1 

Lab #07 Assembler 

 

 

Name__________________________ 

 
 

Convert the following assembly code into “symbol less” code by replacing each symbol (variable or 
label) with its corresponding value (number).  Also, please label the ROM address (line number) for 
each real instruction. 
1. Sum.asm 

 

Assembly Code 
(raw with symbols) 

ROM Address 
(line number) 

Assembly Code 
(cleaned and without symbols) 

// Computes sum = R2 + R3   
// (R2 refers to RAM[2]) 
 
@R2 
D=M 
 
@R3 
D=D+M   // Add R2 + R3 
 
@sum 
M=D     // sum = R2 + R3 
 

  

 

2. Max.asm 
 

Assembly Code 
(raw with symbols) 

ROM Address 
(line number) 

Assembly Code 
(cleaned and without symbols) 

// Computes R2=max(R0, R1)  
// (R0,R1,R2 refer to 
// RAM[0],RAM[1],RAM[2]) 
 
   @R0 
   D=M 
   @R1 
   D=D-M    
   @OUTPUT_FIRST 
   D;JGT  
   @R1 
   D=M              
   @OUTPUT_D 
   0;JMP             
(OUTPUT_FIRST) 
   @R0              
   D=M 
(OUTPUT_D) 
   @R2 
   M=D               
(INFINITE_LOOP) 
   @INFINITE_LOOP 
   0;JMP             

  

 



CS220 pg. 2 

Lab #07 Assembler 

 

3. Rect.asm 
 

Assembly Code 
(raw with symbols) 

ROM Address 
(line number) 

Assembly Code 
(cleaned and without symbols) 

// Draws a rectangle at  
// the top-left corner of 
// the screen. 
// The rectangle is 16  
// pixels wide and R0  
// pixels high. 
 
   @R0 
   D=M 
   @INFINITE_LOOP 
   D;JLE  
   @counter 
   M=D 
   @SCREEN 
   D=A 
   @address 
   M=D 
(LOOP) 
   @address 
   A=M 
   M=-1 
   @address 
   D=M 
   @32 
   D=D+A 
   @address 
   M=D 
   @counter 
   MD=M-1 
   @LOOP 
   D;JGT 
(INFINITE_LOOP) 
   @INFINITE_LOOP 
   0;JMP 

  

 

  



CS220 pg. 3 

Lab #07 Assembler 

 

UML Diagram of Entire Assembler Program 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A brief Java refresher: 

Write Java code to implement the following enum: 

 

 

What does the following code display? 
 
String code = "\t0;JMP  //unconditional jump  "; 
System.out.println(code.trim()); 

 

How would you extract the JMP from the code string above?  Write the Java code to do so. 

What is assigned to the variable dest ? 
 

String code = "D=M;JGT"; 
int index = code.indexOf('='); 
String dest = (index != -1) ? 
 code.substring(0, index) : null; 

 

 



CS220 pg. 4 

Lab #07 Assembler 

 

Write pseudocode for the following helper methods: 

❑ String cleanLine(String rawLine) 

 

 

 
 

❑ Command parseCommandType(String cleanLine) 

 

//DESCRIPTION: determines command type from parameter 

//PRECONDITION: String parameter is clean instruction 

//POSTCONDITION: returns A_COMMAND (A-instruction),  

//               C_COMMAND (C-instruction), L_COMMAND (Label) or 

//               NO_COMMAND (no command) 

 

 

 

//DESCRIPTION: cleans raw instruction by removing non-essential parts 

//PRECONDITION: String parameter given (not null) 

//POSTCONDITION: returned without comments and whitespace 

 

 



CS220 pg. 5 

Lab #07 Assembler 

 

❑ boolean isValidName(String symbol) 

 
 

 

❑ String decimalToBinary(int number) 

 

//DESCRIPTION: converts integer from decimal notation to binary notation 

//PRECONDITION: number is valid size for architecture, non-negative 

//POSTCONDITION: returns 16-bit string of binary digits (first char is MSB) 

 

 

//DESCRIPTION: checks validity of identifiers for assembly code symbols 

//PRECONDITION: start with letters or “_.$:” only, numbers allowed after 

//POSTCONDITION: returns true if valid identifier, false otherwise 

 

 



CS220 pg. 6 

Lab #07 Assembler 

 

 

 

CInstructionMapper 

- compCodes : HashMap<String, String> 

- destCodes : HashMap<String, String> 

- jumpCodes : HashMap<String, String> 

+ CInstructionMapper() 

+ comp(mnemonic : String) : String 

+ dest(mnemonic : String) : String 

+ jump(mnemonic : String) : String 

 

 
Write pseudocode for the following Code methods: 

 
❑ Code() 

 
 

❑ String comp(String mnemonic) 

 

//DESCRIPTION: converts to string of bits (7) for given mnemonic 

//PRECONDITION: hashmaps are built with valid values 

//POSTCONDITION: returns string of bits if valid, else returns null 

 

 

//DESCRIPTION: initializes hashmaps with binary codes for easy lookup 

//PRECONDITION: comp codes = 7 bits (includes a), dest/jump codes = 3 bits 

//POSTCONDITION: all hashmaps have lookups for valid codes 

 

 



CS220 pg. 7 

Lab #07 Assembler 

 

 

 

❑ String dest(String mnemonic) 

 
 

❑ String jump(String mnemonic) 

 
 

//DESCRIPTION: converts to string of bits (3) for given mnemonic 

//PRECONDITION: hashmaps are built with valid values 

//POSTCONDITION: returns string of bits if valid, else returns null 

 

 

//DESCRIPTION: converts to string of bits (3) for given mnemonic 

//PRECONDITION: hashmaps are built with valid values 

//POSTCONDITION: returns string of bits if valid, else returns null 

 

 



CS220 pg. 8 

Lab #07 Assembler 

 

 

Write pseudocode for the following SymbolTable methods: 

 

SymbolTable 

- INITIAL_VALID_CHARS : String 

- ALL_VALID_CHARS : String 

- symbolTable : HashMap<String, Integer> 

+ SymbolTable() 

+ addEntry(symbol : String, address : int) : boolean 

+ contains(symbol : String) : boolean 

+ getAddress(symbol : String) : int 

- isValidName(symbol : String) : boolean 

❑ SymbolTable() 

 
❑ boolean addEntry(String symbol, int address) 

 
❑ boolean contains(String symbol) 

 
❑ int getAddress(String symbol) 

 
❑ boolean isValidName(String symbol ) //same as earlier but rewrite using constants 

//DESCRIPTION: returns address in hashmap of given symbol 

//PRECONDITION: symbol is in hashmap (check w/ contains() first) 

//POSTCONDITION: returns address associated with symbol in hashmap 

 

 

//DESCRIPTION: returns boolean of whether hashmap has symbol or not 

//PRECONDITION: table has been initialized 

//POSTCONDITION: returns boolean if arg is in table or not 

 

 

//DESCRIPTION: adds new pair of symbol/address to hashmap 

//PRECONDITION: symbol/address pair not in hashmap (check contains() 1st) 

//POSTCONDITION: adds pair, returns true if added, false if illegal name 

 

 

//DESCRIPTION: initializes hashmap with predefined symbols 

//PRECONDITION: follows symbols/values from book/appendix 

//POSTCONDITION: all hashmap values have valid address integer 

 

 



CS220 pg. 9 

Lab #07 Assembler 

 

 

 

Parser 

+ NO_COMMAND : char // ‘N’ //constants 

+ A_COMMAND : char // ‘A’ 

+ C_COMMAND : char // ‘C’ 

+ L_COMMAND : char // ‘L’ 

 
- inputFile : Scanner //file stuff + 

debugging 

- lineNumber : int 

- rawLine : String 

 
- cleanLine : String //parsed command parts 

- commandType : char 

- symbol : String 

- destMnemonic : String 

- compMnemonic : String 

- jumpMnemonic : String 

+ Parser(inFileName : String) //drivers 

+ hasMoreCommands() : boolean 

+ advance() : void 

 
- cleanLine() : void //parsing helpers 

- parseCommandType() : void 

- parse() : void 

- parseSymbol() : void 

- parseDest() : void 

- parseComp() : void 

- parseJump() : void 

 
+ getCommandType() : char //useful getters 

+ getSymbol() : String 

+ getDest() : String 

+ getComp() : String 

+ getJump() : String 

 
+ getRawLine() : String              //debugging getters 

+ getCleanLine() : String 

+ getLineNumber() : int 

 

❑ cleanLine() : void //same as part 1 but rewrite using instance variables 
❑ parseCommandType() : void //same as part 1 but rewrite using instance variables 



CS220 pg. 10 

Lab #07 Assembler 

 

 

Write pseudocode for the following Parser methods: 

❑ Parser(String fileName) 

 
 

❑ boolean hasMoreCommands() 

 
 

❑ void advance() 

 

//DESCRIPTION: reads next line from file and parses it into instance vars 

//PRECONDITION: file stream is open, called only if hasMoreCommands() 

//POSTCONDITION: current instruction parts put into instance vars 

 

 

//DESCRIPTION: returns boolean if more commands left, closes stream if not 

//PRECONDITION: file stream is open 

//POSTCONDITION: returns true if more commands, else closes stream 

 

 

//DESCRIPTION: opens input file/stream and prepares to parse 

//PRECONDITION: provided file is ASM file 

//POSTCONDITION: if file can’t be opened, ends program w/ error message 

 

 



CS220 pg. 11 

Lab #07 Assembler 

 

 

❑ void parseSymbol() 

 
 

❑ void parseDest() 

 
 

❑ void parseComp() 

 

//DESCRIPTION: helper method parses line to get comp part 

//PRECONDITION: advance() called so cleanLine has value, 

// call for C-instructions only 

//POSTCONDITION: compMnemonic set to appropriate value from instruction 

//DESCRIPTION: helper method parses line to get dest part 

//PRECONDITION: advance() called so cleanLine has value, 

// call for C-instructions only 

//POSTCONDITION: destMnemonic set to appropriate value from instruction 

 

 

//DESCRIPTION: parses symbol for A- or L-commands 

//PRECONDITION: advance() called so cleanLine has value, 

// call for A- and L-commands only 

//POSTCONDITION: symbol has appropriate value from instruction assigned 

 

 



CS220 pg. 12 

Lab #07 Assembler 

 

 

❑ void parseJump() 

 
 
 

❑ void parse() 

 

//DESCRIPTION: helper method parses line depending on instruction type 

//PRECONDITION: advance() called so cleanLine has value 

//POSTCONDITION: appropriate parts (instance vars) of instruction filled 

 

 

//DESCRIPTION: helper method parses line to get jump part 

//PRECONDITION: advance() called so cleanLine has value, 

// call for C-instructions only 

//POSTCONDITION: jumpMnemonic set to appropriate value from instruction 

 

 



CS220 pg. 13 

Lab #07 Assembler 

 

 

❑ Command getCommandType() 

 
 

❑ String getSymbol() 

 
 

❑ String getDestMnemonic() 

 
 

❑ String getCompMnemonic() 

 
 
 

 

//DESCRIPTION: getter for comp part of C-instruction 

//PRECONDITION: cleanLine has been parsed (advance was called), 

// call for C-instructions only (use getCommandType()) 

//POSTCONDITION: returns mnemonic (ASM symbol) for comp part 

 

 

//DESCRIPTION: getter for dest part of C-instruction 

//PRECONDITION: cleanLine has been parsed (advance was called), 

// call for C-instructions only (use getCommandType()) 

//POSTCONDITION: returns mnemonic (ASM symbol) for dest part 

 

 

//DESCRIPTION: getter for symbol name 

//PRECONDITION: cleanLine has been parsed (advance was called), 

// call for labels only (use getCommandType()) 

//POSTCONDITION: returns string for symbol name 

 

 

//DESCRIPTION: getter for command type 

//PRECONDITION: cleanLine has been parsed (advance was called) 

//POSTCONDITION: returns Command for type (N/A/C/L) 

 

 



CS220 pg. 14 

Lab #07 Assembler 

 

 

❑ String getJumpMnemonic() 

 
 

❑ String getRawLine() 

 
 

❑ String getCleanLine() 

 
 

❑ int getLineNumber() 

 

//DESCRIPTION: getter for lineNumber (debugging) 

//PRECONDITION: n/a 

//POSTCONDITION: returns line number currently being processed from file 

 

 

//DESCRIPTION: getter for cleanLine from file (debugging) 

//PRECONDITION: advance() and cleanLine() were called 

//POSTCONDITION: returns string of current clean instruction from file 

 

 

//DESCRIPTION: getter for rawLine from file (debugging) 

//PRECONDITION: advance() was called to put value from file in here 

//POSTCONDITION: returns string of current original line from file 

 

 

//DESCRIPTION: getter for jump part of C-instruction 

//PRECONDITION: cleanLine has been parsed (advance was called), 

// call for C-instructions only (use getCommandType()) 

//POSTCONDITION: returns mnemonic (ASM symbol) for jump part 

 

 


