Lab #3 (Combinational Logic and ALU)

Name:_____

Date:_____

Converting between Octal and Decimal Numbers

1. Convert 1337 ₈ to decimal (base 10) Use sum of expansion of products (don	't skip steps!)
2. Convert 71 10 to octal (base 8)	
Use the Double-Dabble method of succ	cessive divsion
What file permissions does the octal number 5 exhibit?	 What file permissions does the octal number 3 exhibit?

Converting between Hexadecimal and Decimal Numbers

5.	Convert AC34D1 ₁₆ to decimal (base 10)
	Use sum of expansion of products (don't skip steps!)
6.	Convert 365 ₁₀ to hexadecimal (base 16)
6.	Convert 365 10 to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion
6.	Convert 365 ₁₀ to hexadecimal (base 16) Use the Double-Dabble method of successive divsion

Adding Signed Binary Numbers (with Two's Complement)

Add -8 + 5 in 4-digit binary.
 First convert to Two's Complement binary, then compute the sum.

Half Adder (Two Inputs) Design

 Write the Boolean function for the outputs (Then write the HDL code. 	(sum and carry). Use K-maps if needed.
	sum(a, b) = carry(a, b) =
a b sum carry 0 0 0 0 0 1 1 0 1 0 1 0	CHIP HalfAdder { IN a, b; OUT sum, carry; PARTS: }

Full Adder (Three Input) Design

Implementing the ALU Design (with signed two's complement numbers)

These bits instruct how to pre-set the x input		These bits instruct how to pre-set the y input		This bit selects between + / And	This bit inst. how to post-set out	Resulting ALU output	
ZX	nx	zy	ny	f	no	out=	
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x And y	if no then out=!out	f(x,y)=	
1	0	1	0	1	0	0	
1	1	1	1	1	1	1	
1	1	1	0	1	0	-1	
0	0	1	1	0	0	х	
1	1	0	0	0	0	У	
0	0	1	1	0	1	!x	
1	1	0	0	0	1	!y	
0	0	1	1	1	1	-x	
1	1	0	0	1	1	-у	
0	1	1	1	1	1	x+1	
1	1	0	1	1	1	y+1	
0	0	1	1	1	0	x-1	
1	1	0	0	1	0	у-1	
0	0	0	0	1	0	x+y	
0	1	0	0	1	1	x-y	
0	0	0	1	1	1	у-х	
0	0	0	0	0	0	х&у	
0	1	0	1	0	1	х у	

f(x,y) =	0	"1010" -6	" 0001 " 1	f(x,y) =	1	"1010"	"0001"
zx =	1	"0000"		zx =			
nx =	0	"0000"		nx =			
zy =	1		"0000"	zy =			
ny =	0		"0000"	ny =			
f =	1	"00	000"	f =			
no =	0	"000	0" [0]	no =			
f(x,y) =	-1	"1010"	"0001"	f(x,y) =	х	"0100"	"0101"
zx =				zx =			
nx =				nx =			
zy =				zy =			
ny =				ny =			
f =				f =			
no =				no =			

f(x,y) =	у	"1010"	"0011"	f(x,y) =	!x	"1010"	"0101"
zx =				zx =			
nx =				nx =			
zy =				zy =			
ny =				ny =			
f =				f =			
no =				no =			
f(x,y) =	!y	"1010"	"0101"	f(x,y) =	"-X"	"0010"	"1000"
zx =				zx =			
nx =				nx =			
zy =				zy =			
ny =				ny =			
f =				f =			
no =				no =			
f(x,y) =	"-y"	"1010"	"0001"	f(x,y) =	x+1	"0001"	"0001"
zx =				zx =			
nx =				nx =			
zy =				zy =			
ny =				ny =			
f =				f =			·
no =				no =			
f(x,y) =	y+1	"1010"	"1111"	f(x,y) =	x-1	"0110"	"0001"
zx =				zx =			
nx =				nx =			
zy =				zy =			
ny =				ny =			
f =				f =			
no =				no =			
f(x,y) =	y-1	"0001"	"1111"	f(x,y) =	х+у	"0010"	"0101"
zx =				zx =			
nx =				nx =			
zy =				zy =			
ny =				ny =			
f =				f =			
no =				no =			

f(x,y) =	х-у	"0111"	"0010"	f(x,y) =	у-х	"1101"	"1111"
zx =				zx =			
nx =				nx =			
zy =				zy =			
ny =				ny =			
f =				f =			
no =				no =			
f(x,y) =	x&y	"1011"	"1000"	f(x,y) =	x y	"1111"	"1010"
zx =							
				zx =			
nx =				zx = nx =			
nx = zy =				zx = nx = zy =			
nx = zy = ny =				zx = nx = zy = ny =			
nx = zy = ny = f =				zx = nx = zy = ny = f =			

My dear creative, emotional, sometimes foolish, opinionated human,

You should now see that the characteristics of binary numbers in the two's complement system coupled with a combination of four simple binary/Boolean operations (zeroing, bitwise negation, adding, or'ing) provides us with at least eighteen simple arithmetic functions.

true, Banana Jr. 2000

PS. Now go build your ALU.

Bloom County Babylon by Berke Breathed