COS418 Assignment 3: Raft Leader Election

C0OS5-418 Home Syllabus Assignments Announcements Q&A

Introduction

This 1z the first in a series of assignments 1n which you'll build a fault-tolerant kev/value storage system. You'll start in this assignment by implementing the leader election features of Raft, a replicated state machine protocol. In Assignment 3 yvou will complete Raft's log consensus agreement
features. You will implement Raft as a Go object with associated methods, available to be used as a module in a larger service. Once vou have completed Raft, the course assignments will conclude with such a service: a key/value service built on top of Raft.

Raft Overview

The Eaft protocol 1s used to manage replica servers for services that must continue operation in the face of failure (e.g. server crashes, broken or flaky networks). The challenge 1s that, in the face of these failures, the replicas won't always hold identical data. The Raft protocol helps sort out what
the correct data 1s.

Faft's basic approach for this 1s to implement a replicated state machine. Raft orgamizes client requests into a sequence, called the log. and ensures that all the replicas agree on the the contents of the log. Each replica executes the client requests in the log in the order theyv appear 1n the log,
applying those requests to the service's state. Since all the live replicas see the same log contents, they all execute the same requests in the same order, and thus continue to have identical service state. If a server fails but later recovers, Raft takes care of bringing its log up to date. Raft will
continue to operate as long as at least a majority of the servers are alive and can talk to each other. If there 1z no such majority, Raft will make no progress, but will pick up where it left off as soon as a majority 1s alive again.

You should consult the extended Faft paper and the Raft lecture notes. You may also find this illustrated Eaft suide useful to get a sense of the high-level workings of Raft. For a wider perspective, have a look at Paxos, Chubby, Paxos Made Live, Spanner, Zookeeper, Harp, Viewstamped
Replication, and Bolosky et al.

Software

For this assignment. we will focus primarily on the code and tests for the Raft implementation in src/raft and the simple RPC-like system in src/labrpc. It 1s worth vour while to read and digest the code in these packages.

Before you have implemented anything, vour raft tests wall fail, but this behavior 1s a sign that you have everything properly configured and are ready to begin:

cd cos418 # or wherever you unpacked your tarball
export GOPATH="$PWD"

cd "$GOPATH/src/raft”

% go test -run Election

Test: initial election ...

--- FAIL: TestInitialElection (5.88@s)
config.go:286: expected one leader, got none
Test: election after network failure ...

--- FAIL: TestReElection (5.8@8s)
config.go:286: expected one leader, got none
FAIL

exit status 1

You should implement Raft by adding code to raft/raft.go (only). In that file vou'll find a bit of skeleton code, plus some examples of how to send and receive RPCs, and examples of how to save and restore persistent state.

Your Task: Leader Election

You should start by reading the code to determine which functions are responsible for conducting Raft leader election, if vou haven't already.

The natural first task is to fill in the RequestVotedrgs and RequestVoteReply structs, and modifi Make() to create a background goroutine that starts an election (byv sending out RequestVote RPCs) when it hasn't heard from another peer for a while. For election to work, yvou will also need to
implement the RequestVote() RPC handler so that servers will vote for one another.

To implement heartbeats, vou will need to define an Appendentries RPC struct (though vou will not need any real pavload vet), and have the leader send them out periodically. You will also have to write an AppendEntries RPC handler method that resets the election timeout so that other servers
don't step forward as leaders when one has already been elected.

Malke sure the timers in different Raft peers are not synchronized. In particular, make sure the election timeouts don't always fire at the same time_ or else all peers will vote for themselves and no one will become leader.

Your Raft implementation must support the following interface, which the tester and (eventually) vour key/value server will use. You'll find more details in comtnents in raft.go.

/f create & new Raftt server instance:
rf := Make{peers, me, persister, applyCh)

J/ start agreement on a new log entry:
rf.start{command interface{}) (index, term, isleader)

S/ ask a Raft for its current term, and whether it thinks it is leader
rf.GetState() (term, isleader)

/S each time a new entry is committed to the log, each Raft peer
J// should send an ApplyMsg to the service (or tester).

type ApplyMsg

A service calls Make(peers,me,..) to create a Raft peer. The peers argument is an array of established RPC connections, one to each Raft peer (including this one). The me argument is the index of this peer in the peers array. Start(command) asks Eaft to start the processing to append the command
to the replicated log. start() should return immediately, without waiting for for this process to complete. The service expects your implementation to send an ApplyMsg for each new committed log entry to the applyCh argument to Make().

Your Raft peers should exchange RPCs using the labrpc Go package that we provide to vou. It 1s modeled after Go's rpc library, but internally uses Go channels rather than sockets. raft.go contains some example code that sends an RPC (sendRequestvote()) and that handles an incoming RPC
{Requestvote()).

Implementing leader election and heartbeats (empty AppendEntries calls) should be sufficient for a single leader to be elected and -- in the absence of failures -- stay the leader, as well as redetermine leadership after failures. Once you have this working, vou should be able to pass the two Election
"go test” tests:
% go test -run Election
Test: initial election ...
... Passed
Test: election after network failure ...
... Passed
PASS
ck raft7.ees8s

Resources and Advice

s Start early. Although the amount of code to implement 1sn't large, getting 1t to work correctly will be very challenging. Both the algorithm and the code 1s tricky and there are manv comer cases to consider. When one of the tests fails, 1t may take a bit of puzzling to understand 1n what
scenario yvour solution isn't correct, and how to fix vour solution.

* Read and understand the extended Raft paper and the Raft lecture notes before vou start. Your implementation should follow the paper's description closely, since that's what the tests expect. Figure 2 mav be useful as a pseudocode reference.

» Add any state vou need to keep to the Raft struct in raft.go. Figure 2 in the paper may provide a good guideline.
Submission

Submit your code to the COS418 Assignment 3 Dropbox by 11:3%m on 11/21. You may submit multiple times, only the one in the Dropbox at the time of grading will be recorded.

Before submitting, please run the full tests given above for both parts one final time. You will receive full credit for the leader election component if your software passes the Election tests (as run by the go test commands above) on the CS servers.

The final portion of vour credit 1s determined by code quality tests, using the standard tools gofmt and go vet. You will recerve full credit for this portion if all files submitted conform to the stvle standards set by gofmt and the report from go vet 1s clean for your raft package (that 1s, produces no
errors). If vour code does not pass the gofmt test, vou should reformat vour code using the tool. You can also use the Go Checlkestyle tool for advice to improve vour code's style, if applicable. Additionally, though not part of the graded checks, it would also be advisable to produce code that
complies with Golint where possible.

Acknowledgements

This assignment 1s adapted from MIT's 6 824 course. Thanks to Frans Kaashoek, Fobert Morris, and Nickolai Zeldovich for their support.

Last updared: 201 7-10-30 14:21:33 -0400

https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3MucHJpbmNldG9uLmVkdS9jb3Vyc2VzL2FyY2hpdmUvZmFsbDE3L2NvczQxOC9pbmRleC5odG1s
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3MucHJpbmNldG9uLmVkdS9jb3Vyc2VzL2FyY2hpdmUvZmFsbDE3L2NvczQxOC9zeWxsYWJ1cy5odG1s
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3MucHJpbmNldG9uLmVkdS9jb3Vyc2VzL2FyY2hpdmUvZmFsbDE3L2NvczQxOC9hc3NpZ25tZW50cy5odG1s
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3MucHJpbmNldG9uLmVkdS9jb3Vyc2VzL2FyY2hpdmUvZmFsbDE3L2NvczQxOC9hbm5vdW5jZW1lbnRzLmh0bWw=
https://getfireshot.com/pdf_aHR0cHM6Ly9waWF6emEuY29tL3ByaW5jZXRvbi9mYWxsMjAxNy9jb3M0MTgvaG9tZQ==
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3MucHJpbmNldG9uLmVkdS9jb3Vyc2VzL2FyY2hpdmUvZmFsbDE3L2NvczQxOC9wYXBlcnMvcmFmdC5wZGY=
https://getfireshot.com/pdf_aHR0cDovL3RoZXNlY3JldGxpdmVzb2ZkYXRhLmNvbS9yYWZ0Lw==
https://getfireshot.com/pdf_aHR0cDovL3N0YXRpYy51c2VuaXgub3JnL2V2ZW50L25zZGkxMS90ZWNoL2Z1bGxfcGFwZXJzL0JvbG9za3kucGRm
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3MucHJpbmNldG9uLmVkdS9jb3Vyc2VzL2FyY2hpdmUvZmFsbDE3L2NvczQxOC9odzMudGd6
https://getfireshot.com/pdf_aHR0cHM6Ly9nb2xhbmcub3JnL3BrZy9uZXQvcnBjLw==
https://getfireshot.com/pdf_aHR0cHM6Ly93d3cuY3MucHJpbmNldG9uLmVkdS9jb3Vyc2VzL2FyY2hpdmUvZmFsbDE3L2NvczQxOC9wYXBlcnMvcmFmdC5wZGY=
https://getfireshot.com/pdf_aHR0cHM6Ly9kcm9wYm94LmNzLnByaW5jZXRvbi5lZHUvQ09TNDE4X0YyMDE3LzM=
https://getfireshot.com/pdf_aHR0cHM6Ly9naXRodWIuY29tL3Fpbml1L2NoZWNrc3R5bGU=
https://getfireshot.com/pdf_aHR0cHM6Ly9naXRodWIuY29tL2dvbGFuZy9saW50

