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Problem 1 - Perceptron 15 points

Consider a 2-dimensional data set in which all points with x1 > x2 belong to the positive class, and all points
with x1 ≤ x2 belong to the negative class. Therefore, the true separator of the two classes is linear hyperplane
(line) defined by x1 − x2 = 0. Now create a training data set with 20 points randomly generated inside the
unit square in the positive quadrant. Label each point depending on whether or not the first coordinate x1 is
greater than its second coordinate x2. Now consider the following loss function for training pair (X̄, y) and
weight vector W̄ :

L = max{0, a− y(W̄ · X̄)},

where the test instances are predicted as ŷ = sign{W̄ · X̄}. For this problem, W̄ = [w1, w2], X̄ = [x1, x2]
and ŷ = sign(w1x1 + w2x2). A value of a = 0 corresponds to the perceptron criterion and a value of a = 1
corresponds to hinge-loss.

1. Implement the perceptron algorithm without regularization, train it on the 20 points above, and test
its accuracy on 1000 randomly generated points inside the unit square. Generate the test points using
the same procedure as the training points. (6)

2. Change the perceptron criterion to hinge-loss in your implementation for training, and repeat the
accuracy computation on the same test points above. Regularization is not used. (5)

3. In which case do you obtain better accuracy and why? (2)

4. In which case do you think that the classification of the same 1000 test instances will not change
significantly by using a different set of 20 training points? (2)

Problem 2 - Weight Initialization, Dead Neurons, Leaky ReLU 30 points

Read the two blogs, one by Andre Pernunicic and other by Daniel Godoy on weight initialization. You will
reuse the code at github repo linked in the blog for explaining vanishing and exploding gradients. You can
use the same 5 layer neural network model as in the repo and the same dataset.

1. Explain vanishing gradients phenomenon using standard normalization with different values of standard
deviation and tanh and sigmoid activation functions. Then show how Xavier (aka Glorot normal)
initialization of weights helps in dealing with this problem. Next use ReLU activation and show that
instead of Xavier initialization, He initialization works better for ReLU activation. You can plot
activations at each of the 5 layers to answer this question. (10)

2. The dying ReLU is a kind of vanishing gradient, which refers to a problem when ReLU neurons become
inactive and only output 0 for any input. In the worst case of dying ReLU, ReLU neurons at a certain
layer are all dead, i.e., the entire network dies and is referred as the dying ReLU neural networks in
Lu et al (reference below). A dying ReLU neural network collapses to a constant function. Show this
phenomenon using any one of the three 1-dimensional functions in page 11 of Lu et al. Use a 10-layer
ReLU network with width 2 (hidden units per layer). Use minibatch of 64 and draw training data
uniformly from [−

√
7,
√

7]. Perform 1000 independent training simulations each with 3,000 training
points. Out of these 1000 simulations, what fraction resulted in neural network collapse. Is your
answer close to over 90% as was reported in Lu et al. ? (10)

3. Instead of ReLU consider Leaky ReLU activation as defined below:

φ(z) =

{
z if z > 0

0.01z if z ≤ 0.
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Run the 1000 training simulations in part 2 with Leaky ReLU activation and keeping everything else
same. Again calculate the fraction of simulations that resulted in neural network collapse. Did Leaky
ReLU help in preventing dying neurons ? (10)

References:

• Andre Perunicic. Understand neural network weight initialization.
Available at https://intoli.com/blog/neural-network-initialization/

• Daniel Godoy. Hyper-parameters in Action Part II — Weight Initializers.

• Initializers - Keras documentation. https://keras.io/initializers/.

• Lu Lu et al. Dying ReLU and Initialization: Theory and Numerical Examples .

Problem 3 - Batch Normalization, Dropout, MNIST 25 points

Batch normalization and Dropout are used as effective regularization techniques. However its not clear
which one should be preferred and whether their benefits add up when used in conjunction. In this problem
we will compare batch normalization, dropout, and their conjunction using MNIST and LeNet-5 (see e.g.,
https://engmrk.com/lenet-5-a-classic-cnn-architecture/). LeNet-5 is one of the earliest convolutional neural
network developed for image classification and its implementation in all major framework is available. You
can refer to Lecture 3 slides for definition of standardization and batch normalization.

1. Explain the terms co-adaptation and internal covariance-shift. Use examples if needed. You may need
to refer to two papers mentioned below to answer this question. (5)

2. Batch normalization is traditionally used in hidden layers, for input layer standard normalization is
used. In standard normalization the mean and standard deviation are calculated using the entire
training dataset whereas in batch normalization these statistics are calculated for each mini-batch.
Train LeNet-5 with standard normalization of input and batch normalization for hidden layers. What
are the learned batch norm parameters for each layer ? (5)

3. Next instead of standard normalization use batch normalization for input layer also and train the
network. Plot the distribution of learned batch norm parameters for each layer (including input) using
violin plots. Compare the train/test accuracy and loss for the two cases ? Did batch normalization for
input layer improve performance ? (5)

4. Train the network without batch normalization but this time use dropout. For hidden layers use dropout
probability of 0.5 and for input layer take it to be 0.2 Compare test accuracy using dropout to test
accuracy obtained using batch normalization in part 2 and 3. (5)

5. Now train the network using both batch normalization and dropout. How does the performance (test
accuracy) of the network compare with the cases with dropout alone and with batch normalization
alone ? (5)

References:

• N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.Salakhutdinov . Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. Available at at https://www.cs.toronto.edu/ rsalakhu/pa-
pers/srivastava14a.pdf.

• S. Ioffe, C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. Available at https://arxiv.org/abs/1502.03167.

2

https://intoli.com/blog/neural-network-initialization/
https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404
https://keras.io/initializers/
https://arxiv.org/pdf/1903.06733.pdf
https://engmrk.com/lenet-5-a-classic-cnn-architecture/
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://arxiv.org/abs/1502.03167


Homework 2

COMS E6998 section 010
PRACT DEEP LEARNING SYS PERF

Instructor: Parijat Dube
Due: Oct. 15, 2020

Problem 4 - Learning Rate, Batch Size, FashionMNIST 30 points

Recall cyclical learning rate policy discussed in Lecture 4. The learning rate changes in cyclical manner
between lrmin and lrmax, which are hyperparameters that need to be specified. For this problem you first
need to read carefully the article referenced below as you will be making use of the code there (in Keras) and
modifying it as needed. For those who want to work in Pytorch there are open source implementations of
this policy available which you can easily search for and build over them. You will work with FashionMNIST
dataset and MiniGoogLeNet (described in reference).

1. Summarize FashionMNIST dataset, total dataset size, training set size, validation set size, number of
classes, number of images per class. Show any 3 representative images from any 3 classes in the dataset.
(3)

2. Fix batch size to 64 and start with 10 candidate learning rates between 10−9 and 101 and train your
model for 5 epochs. Plot the training loss as a function of learning rate. You should see a curve like
Figure 3 in reference below. From that figure identify the values of lrmin and lrmax. (5)

3. Use the cyclical learning rate policy (with exponential decay) and train your network using batch size
64 and lrmin and lrmax values obtained in part 1. Plot train/validation loss and accuracy curve (similar
to Figure 4 in reference). (5)

4. Fix learning rate to lrmin and train your network starting with batch size 64 and going upto 8192. If
your GPU cannot handle large batch sizes, you can employ effective batch size approach as discussed
in Lecture 3 to simulate large batches. Plot the training loss as a function of batch size. Do you see
a similar behavior of training loss with respect to batch size as seen in part 2 with respect to learning
rate ? (5)

5. Can you identify bmin and bmax from the figure in part 4 for devising a cyclical batch size policy ?
Create an algorithm for automatically determining batch size and show its steps in a block diagram as
in Figure 1 of reference. (4)

6. Use bmin and bmax values identified in part 3 and devise a cyclical batch size policy such that the
batch size changes in a cyclical manner between bmin and bmax. In part 3 we did exponential de-
crease in learning rate as training progress. What should be an analogous trajectory for batch size as
training progresses, exponential increase or decrease ? Use cyclical batch size policy (with appropriate
trajectory) and train your network using learning rate lrmin. (6)

7. Compare the best accuracy from the two cyclical policies. Which policy gives you the best accuracy ?
(2)

PS: In part 3 of problem we are doing cyclical learning rate with exponential decay. The code under ”Keras
Learning Rate Finder” in the blog implements triangular policy, you may need to change it to have exponential
decay as mentioned in the first reference below. For part 4 and 6, you will be writing your own python project
”Keras Batch Finder”.

References:

1. Leslie N. Smith Cyclical Learning Rates for Training Neural Networks. Available at https://arxiv.org/abs/1506.01186.

2. Keras implementation of cyclical learning rate policy. Available at https://www.pyimagesearch.com/2019/08/05/keras-
learning-rate-finder/.
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