
CSCI 2275 – Programming and Data Structures

Instructor: Archana Anand

TA : Himanshu Gupta

Assignment 4

Due: Friday, October 4, before 11:59pm.

Communication between towers

In the Lord of the Rings trilogy, there is a scene where the first beacon is lit in the towers of Minas
Tirith. The second beacon then sees the fire, and knows to light its fire to send a signal to the third
beacon, and so forth. This was a means of communicating in the days before telegraphs were
invented as it was much faster than sending a human rider to deliver a message. Communication
towers were equipped with signaling mechanisms, such as mirrors, that could spell out messages
using the positions of the mirrors.

Today, there are several examples of communication networks that are conceptually similar, but
much more technically advanced, that route messages through multiple hubs between the sender
and the receiver. For example, when you type a URL into a web browser, a request is sent through a
network of service providers to the destination, and then packets of information are sent back to
your machine. If I type www.google.com from my home in Boulder, my request follows this path:

1 192.168.2.1 (192.168.2.1)

2 c-24-9-60-1.hsd1.co.comcast.net (24.9.60.1)

3 te-9-7-ur02.boulder.co.denver.comcast.net

4 xe-13-3-1-0-ar01.aurora.co.denver.comcast.net

5 he-3-10-0-0-cr01.denver.co.ibone.comcast.net (68.86.92.25)

te-1-1-0-4-cr01.chicago.il.ibone.comcast.net (68.86.95.205)

6 xe-2-0-0-0-pe01.910fifteenth.co.ibone.comcast.net (68.86.82.2)

7 as15169-1-c.910fifteenth.co.ibone.comcast.net (23.30.206.106)

8 72.14.234.57 (72.14.234.57)

9 209.85.251.111 (209.85.251.111)

10 den03s06-in-f16.1e100.net (74.125.225.208)

http://www.google.com/
http://www.google.com/

Each IP address is a hop in the network for my request, which is received at each service provider
and then forwarded to the next service provider in the network, depending on the final destination
of the message.

(Note: I got this path by typing traceroute www.google.com in a terminal window. From campus, you
will see a different path.)

Build your own communications network

In this assignment, you’re going to simulate a communications network using a doubly linked list.
Each node in your linked list will represent a city and you need to be able to send a message
between nodes from one given node of the country to the other. Your program also needs to
provide the capability to update the network by adding cities, and deleting cities, and still be able to
transmit the message.

(Note: I’ll refer to the linked list as “the network” throughout this document.)

Include the following cities in your network:

Los Angeles

Phoenix

Denver

Dallas

St. Louis

Chicago

Atlanta

Washington, D.C.

New York

Boston

Implement each city as a struct with a name, a pointer connecting it to the next city in the network
and the previous city in the network, and a place to store the message being sent. (You can assume
the message is a string.) When you initially build your network, the order of the cities should be the
same as the order listed above. After the network is built, you will provide the option of adding
additional cities.

http://www.google.com/
http://www.google.com/

First, display a menu

When your program starts, you should display a menu that presents the user with options for how to
run your program. The menu needs to look like the one shown here:

The user will select the number for the menu option and your program should respond accordingly
to that number. Your menu options need to have the following functionality.

1. Build Network: This option builds the linked list using the cities listed above in the order they
are listed. Each city needs to have a name, a pointer to the next city, and a message value, which will
initially be an empty string. This option should be selected first to build the network, and can be
selected anytime the user wants to rebuild the starting network after adding cities. As part of the
Build Network functionality, you should print the name of each city in the network once the network
is built in the following format:

NULL <- Los Angeles <-> Phoenix <-> Denver <-> Dallas <-> St. Louis <-> Chicago <-> Atlanta <->
Washington, D.C. <-> New York <-> Boston -> NULL

2. Print Network Path: This option prints out the linked list in order from the head to the tail by
following the next pointer for each city. You should print the name of each city. Printing the path
could be very useful to you when debugging your code. The format should be the same as the
format in Build Network.

3. Transmit Message from city x to city y: The message that you need to transmit is in the file
messageToTransmit.txt on Canvas. Your program needs to open this file and read word by word and
transmit the message starting at city x of the network and ending at city y of the network and then
transmit back from y to x in the network. Take x and y as input from user. When a city receives the
message, you should print.

<city name> received <word>

where <city name> is the name of the city and <word> is the word received. When a city receives a
word, the word should be deleted from the sender city, i.e set the message for the sender city to an
empty string. Here is a screenshot of the output I get after transmitting the first two words in the file
from city Los Angeles to city Boston.

Note: The name of the file that contains the message should be a command line argument to your
program.

Space Seperated Input: if you take cin for getting input for city like “Los Angeles”, program would
not work. instead use getline(cin,cityx)
Example:
cin.clear(); // used when taking multiple input from cin using getline
cin.ignore(); // used when taking multiple input from cin using getline
string x,y;
cout<<"Enter city x:"<<endl;
std::getline(cin, x);
cout<<"Enter city y:"<<endl;
 std::getline(cin, y);

4. Add City: This option allows the user to add a new city to the network. If the user selects this
option, then they should be prompted for the name of the city and the city that the new city should
follow in the network. For example, if the user wants to add Tucson after Phoenix in the network,
then the first four cities in the network would be:

Los Angeles <-> Phoenix <-> Tucson <-> Denver…

You don’t need to print anything when you add a new city, just call the Print Network function again
from the menu if you want to verify that the city has been added.

If the user wants to add a new city to the head of the network, e.g. replace Los Angeles as the
starting city, then they should type “First” when prompted for the previous city and your code
should handle this special case.

Here is a screenshot showing the expected output for the add city functionality when the user
selects Add City from the menu.

5. Delete City: This option allows the user to delete a city from the network. When the user selects
this option, they should be prompted for the name of the city to delete. Your code should then
update the next and previous pointers for the surrounding cities and free the memory for the
deleted city.

6. Clear Network: This option allows the user to delete all cities in the network starting at the
head city. After this functionality executes, the head of the list should be NULL and all cities should
be deleted from the network. When a city is deleted, print the name of the city just before freeing
the memory. Your clear network method should be called in the destructor of
CommunicationNetwork, in addition to being a menu option.

7. Quit: This option allows the user to exit the program.

For each of the options presented, after the user makes their choice and your code runs for that
option, you should re-display the menu to allow the user to select another option.

Structuring your program

The specific cout statements to produce the expected output are shown in Appendix A.

The functionality for your network will be implemented in a class called CommunicationNetwork.
Your code needs to be readable, efficient, and accomplish the task provided.

Here are the prototypes for the methods included in the class.

void CommunicationNetwork::addCity(string previousCity, string newCity)

/*Insert a new city into the linked list after the previousCity. The name of the new city is in the
argument newCity.

*/

void CommunicationNetwork::transmitMsg(char *filename)

/*Open the file and transmit the message between all city x and y in the network word by word.
Only one city can hold the message at a time; as soon as it is passed to the next city, it needs to be
deleted from the sender city. Once the message reaches the city y of the network, it needs to be
transmitted back the other direction to the city x of the network. A word needs to be received back
at city x from y of the network before sending the next word.

*/

void CommunicationNetwork::printNetwork()

/*Start at the head of the linked list and print the name of each city in order to the end of the list. */

void CommunicationNetwork::buildNetwork()

/*Build the initial network from the cities given in this writeup. The cities can be fixed in the
function, you do not need to write the function to work with any list of cities. */

void CommunicationNetwork::deleteCity(string cityNameDelete)

/*Find the city in the network where city name matches cityNameDelete. Change the next and
previous pointers for the surrounding cities and free the memory.

*/

void CommunicationNetwork::clearNetwork()

/*Delete all cities in the network, starting at the head city.

*/

Suggestions for completing this assignment

There are several components to this assignment that can be treated independently. My advice is to
tackle these components one by one, starting with printing the menu and getting user input. Next,
build the network and print it. Then, add the functionality to add additional cities.

Once you get one feature completed, test, test, test, to make sure it works before moving on to the
next feature.

There are several examples of how to work with linked lists in Chapter 5 in your book.

Also, start early.

Appendix A – cout statements

Print path

cout << "===CURRENT PATH===" << endl;

cout<<"NULL <- ";

cout << tmp->name << " <-> "; //for all nodes in network

cout << current->cityName << " -> ";

cout << "NULL" << endl;

cout << "==================" << endl;

Transmit Message

cin.clear();

cin.ignore();

string x,y;

cout<<"Enter city x:"<<endl;

 std::getline(cin, x);

 cout<<"Enter city y:"<<endl;

 std::getline(cin, y);

cout<<sender->cityName<<" received "<<sender->message<<endl;

//if network not built yet, head = NULL

cout << "Empty list" << endl;

Adding a new city

cin.clear();

cin.ignore();

cout << "Enter a city name: " << endl;

getline(cin,cityNew);

cout << "Enter a previous city name: " << endl;
getline(cin,cityPrevious);

Delete city

if city name not found

cout<<cityNameIn<<"not found"<<endl;

Clear network

cout<<"deleting "<<tmp->cityName<<endl; //for all nodes in network

Print menu

cout << "======Main Menu======" << endl;

cout << "1. Build Network" << endl;

cout << "2. Print Network Path" << endl;

cout << "3. Transmit Message Coast-To-Coast-To-Coast" << endl;

cout << "4. Add City" << endl;

cout << "5. Delete City" << endl;

cout << "6. Clear Network" << endl;

cout << "7. Quit" << endl;

Quit

cout << "Goodbye!" << endl;

