
Assignment 3 Ray Tracing (Part 2 – Triangles &
Recursion) Solution
 Due: October 23rd

Getting Started:

For this assignment you will be making a full-featured ray tracer. You can
find several sample scenes posted on the course website as sample files.

Requirements:
 Your ray tracer should ideally build off your submission to HW2. It will be
worth 85/100 points to get these basics features:

• Arbitrary camera placement, film resolution, and aspect ratio
• Arbitrary scenes with spheres, triangles (possible with vertex normals), and

arbitrary background colors
• Arbitrary materials, including diffuse and specular shading, reflections, and

refractions
• Point and directional lights
• Ambient lighting
• Shadows
• Recursion to a bounded depth

To get the full 100 points you need to add additional features from the list below (ask
me if you have something in mind not on the list). Its okay if you need to extend the
scene format in some way, just make sure you include a sample scene that
shows off your new, cool features!

Additional Features:

The number in front is how many points a feature is worth. Their will
be partial
credit for features that “sort of” work.

Scene specifications / Primitives:
(5) Cones and Cylinders
(5) Boxes and Planes
(5) Constructive Solid Geometry (union, difference, and intersection of primitives)
(10) Transformations on primitives (support 4×4 transformations or procedural
ones ! http://bit.ly/1vO4tnl)
(20) Procedurally generated terrain/heightfields

Complex Lighting
(5) Area lights that produce soft shadows
(10) Ambient Occlusion
(20) Image-based lighting (e.g., environment maps)

http://bit.ly/1vO4tnl

Sampling
(5) Jittered supersampling
(5) Adaptive supersampling
(5) Motion Blur
(5) Depth of Field
(15) Physically-based camera lens simulation (match the assortment of lens
commonly found in real cameras, e.g., https://en.wikipedia.org/wiki/Zoom_lens)

Materials
(5) Texture mapping
(5) Bump mapping
(5) Procedural texturing or bump mapping (checkerboard, wood, marble,
mandelbrot set, etc..)

Miscellaneous
(5) User interface that shows the raytraced image being updated
(10) An acceleration structure: BVH, OctTree, etc. (measure the performance impact
on different scenes!)
(15) Parallelize the raytracer (and analyze the performance gains as you add more
processors!)
(50) Real-time SIMD/GPU Implementation using e.g., CUDA - http://bit.ly/1EplJpd

Submission Instructions:
 Create a sample webpage with:

• A zip file of all your code
• Several output images from your raytracer (including at least one of the

sample scenes)
• Brief description of your implementation, any issues you saw, and a list of

any extra credit tasks you attempted
• Submission to Art Contest (optional)

Hints:

• You should be able to leverage your previous raytracer. Any extra credit work
you did there should roll easily into this assignment. Try to be strategic about
what extra features you choose to implement.

• A BVH is an easy way to render large, impressive scenes in a reasonable
amount of time

• If your running out of time focus on the easier options such as boxes, planes,
CSG and supersampling. That way you get some easy things completed well
rather than rushing through something you don’t have time to finish.

http://bit.ly/1EplJpd

