
COP 3503 – Project, Stage 2

Purpose

This stage revolves around pre-planning your eventual implementation
of the overall project, as will be completed to accomplish Stage 3.

Description

 Before proceeding to implement all of the functionality listed in the

Project Overview, it is wise to first plan out one’s approach to coding the
program. For this stage, we are not looking for code – we are looking for

plans. Your task is two-fold:

 To draw up UML diagrams (we’ll talk about these in a near-future
lecture) that show the coding structure you plan to implement in your

program and the relationships in the classes thereof.
o What structure do you believe will be necessary within your

program to carry out its requirements?

 To provide a few diagrams on exactly how your proposed design
would be used to process select incoming expressions.

o I want to see thought given to exactly how your design will be
used to interpret and perform the math requested of the

eventual program. Even if you’re unsure that your approach
will truly be sufficient, I want a good-faith best effort towards

this in your submission.

There are no strict requirements on what must and must not be in
your program, but as this project is designed to showcase interesting uses of

polymorphism, the rest of this document will be devoted to the declaration
of a “base class” that can serve as a strong foundation for the data your

program will receive from the results of Stage 1’s shunting yard algorithm.
The methods declared here should completely suffice for implementation of

all requirements mentioned in the project overview, when implemented
properly by appropriate extensions of the Expression class seen on the next

page.

You are still permitted to take alternative approaches, though I will
warn you that leaving everything in string form as long as possible tends to

be overly tedious to manage when it comes time to actually simplify
expressions. Those who take this approach usually struggle when presented

with complicated (but legal) inputs.

The foundational/base class

// Models a component of a mathematical expression.

class Expression
{
 /* Calculates the value of the expression.

 */
 virtual int getValue() = 0;

 /* Returns the requested operand for this expression
 * component.
 */
 virtual Expression* getLeftSide() = 0;
 virtual Expression* getRightSide() = 0;

/* Returns the individual multiplicative factors of the
 * expression – only those of a positive power. (Thus,
 * belonging in the numerator if fractional.)
 */

 virtual vector<Expression*> getNumeratorFactors() = 0;

/* Returns the individual multiplicative factors of the
 * expression – only those of a negative power. (Thus,
 * belonging in the denominator if fractional.)
 */

 virtual vector<Expression*> getDenominatorFactors() = 0;

/* If the expression is the result of addition or
 * subtraction, returns the individual terms.
 */

 virtual vector<Expression*> getAdditiveTerms() = 0;

/* Signals the expression to produce a simplified version
 * of itself put into lowest terms.
 */

 virtual Expression* simplify() = 0;
}

As a reminder, note that as mentioned in the project overview, you do not have to
determine multiplicative factors of an addition or subtraction if it can’t be reduced to a
single arithmetic term.

An extra note: in case this is not otherwise made clear, you are not required to use
this as a base class within your program. If you feel changes might prove beneficial or
necessary, make them – this is your project, and you have creative freedom here. You
must, however, make clear to me how your proposed changes and/or alternate
structure will aid in fulfilling the project’s requirements. (This is significantly aided by
well-done example expression diagrams, which are covered later in this document.)

This class is designed to provide the core functionality necessary to obtain the
information necessary to reduce a combination of expressions into lowest terms for
Expressions of the following type:

 class Integer;
o Represents a simple integer.
o The value of an Integer is the Integer itself.

 class Addition;
o Represents the addition of two expressions, which can be an Integer or

one of the other types implementing Expression, such as Addition.

 class Subtraction;
o Like addition, but with a flipped sign on the second operand.

 class Multiplication;
o Models multiplying two expressions together.

 class Division;
o Great for representing fractions.

 class Exponentiation;
 class NthRoot;
 class Logarithm;

o … you probably get the idea from the other examples.

Examples and Clarifications:

Expression: 8* (2 rt 2) - 4

getNumeratorFactors() returns {8*(2 rt 2) - 4}. It does not have to determine
4 * (2 * (2 rt 2) – 1), though that would be worthy of some extra credit.

getAdditiveTerms() returns {8*(2 rt 2), -4}.

3 * (8 * (2 rt 2) – 4)

getNumeratorFactors() returns {3, 8*(2 rt 2)– 4}.
getAdditiveTerms() returns {3 * (8 * (2 rt 2)– 4)}, as there is no top-level addition.

Required use-case Diagrams:

Provide diagrams that show how your design would be used to process the
following expressions:

1. 2 * (5 + 2 ^ 3)

2. 3 + 2 * 3 rt 81

3. 1 / 10 + 1 / 10

4. 2 rt 2 * 2 rt 8

You should use a visual, step-by-step breakdown that would correspond to
“showing all your work”. Indicate which objects and/or functions are used to transform
the expression at each step.

A personal example diagram for #1 is provided at the end of this document.

Submissions:

 Please submit all work in *.doc or *.pdf form. If including stand-alone images,
please use *.gif, *.jpg, or *.png formats.

2 * (5 + 2 ^ 3)

Multiplication.simplify()

This triggers Addition.simplify() on Multiplication.getRightSide().

2

Integer

5

Integer

2

Integer

3

Integer

Multiplication

Addition

Exponentiation

2

Integer

Multiplication

Addition

(simplified) (not yet
simplified)

Addition.simplify()

This triggers Exponentiation.simplify() on Addition.getRightSide().

Exponentiation.simplify()

Both left and right are simplified, and we can simplify the combination further! Now to
do the actual calculation…

5

Integer

Addition

Exponentiation

(simplified) (not yet
simplified)

2

Integer

3

Integer

Exponentiation

(simplified)
(simplified)

Still Exponentiation.simplify()…

Given the simplified left and right sides, we note that we can actually evaluate this one
and simplify the overall expression, returning an Integer with value 8.

Back in Addition.simplify()…

8

Integer

5

Integer

Addition

8

Integer

(simplified) (now simplified
as much as possible)

As the left and right are “like
terms,” it is possible to

simplify the whole Addition.

13

Integer

As in, this Addition.simplify() returns an Integer with value 13.
Back in Multiplication.simplify()…

As the Multiplication was the top-level operation in the expression, this means that the
overall expression simplifies to a single, simple Integer: 26.

2

Integer

Multiplication

13

Integer

(simplified) (now simplified
as much as possible)

26

Integer

As the left and right are
“sufficiently like terms,” it is
possible to combine them in
a Multiplication operation.

