
COP 3503 – Project, Stage 1

Purpose

This stage involves recursion and recursion-like reasoning in coding while

also actively preparing a critical component necessary for the class project.

Description

 As mentioned in class, computers don’t natively understand mathematical

expressions in the way we prefer to write them. While we prefer “infix” notation,

where the operators come between the values being operated upon, computers

prefer either “prefix” or “postfix” notation, as these are unambiguous and easier for

them to operate upon. As the project, at its core, is to write a mathematical

calculator, we will need to convert math expressions to one or the other at some

point.

The requirement of this project stage is to implement the Shunting-Yard

algorithm (http://en.wikipedia.org/wiki/Shunting-yard_algorithm) as it applies to

the overall design of this project. You do not need to calculate any values – the

goal is to simply turn any input infix expression into a postfix expression, an

analysis that will aid the later stages of this project.

You may assume that there will always be spaces between any values and

operators, as this can aid parsing and reduce the complexity of your input code.

Example input/output:

> 67 + (32 / 8) * 3 rt 8

67 32 8 / 3 8 rt * +

This is all we’re looking for in this project stage – no bells or whistles needed.

Please keep the prompt as you see it in this example – just a leading “>” to request

input – as this will aid us in our grading efforts.

http://en.wikipedia.org/wiki/Shunting-yard_algorithm

Some quick web searches can easily find you example code for this problem

online. Keep in mind that their examples will not likely fully apply to our project

spec (use of “rt” as an operator) and will likely need further modification, so

whatever you choose to use, you’re responsible for knowing how it works and

making any modifications necessary for this stage’s implementation. You will be

reusing this code again in the project’s final stage.

Secondly, while such online examples do exist, you may find it a worthwhile

exercise to attempt your own implementation from scratch, as the necessary logic

provides great programming practice. I personally believe you would be best

served by referencing the Wikipedia article’s explanation and translating that into

code.

Submission

 Your code and any accompanying documents should be submitted online

through the Canvas website’s assignment tab for this homework. All submission

data must be submitted compressed within a single *.zip archive – the assignment

tab will be configured to accept only *.zip files.

 Your code must be in the base directory inside of your submitted *.zip in

order for us to efficiently grade it. Additionally, you must submit a makefile and

your *h and *.cpp files – your original source. Should you choose to include any

additional documents, please put them in one of the following formats within the

*.zip:

 *.pdf

 *.txt

 *.doc / *.docx

Note that failure to follow these instructions will likely result in an extremely low

grade.

Again, please submit a makefile for this project; we’ll provide a baseline, single-

file makefile for you to use which will require edits if you use a different filename or

spread your code across multiple *.cpp files.

